85 Maximal Rectangle (最大矩形)

本文介绍了一种寻找二维二进制矩阵中只包含1的最大矩形的方法。通过将每层视为直方图,并利用最大矩形面积算法,可以有效地解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 6.

此题是之前那道的 Largest Rectangle in Histogram 直方图中最大的矩形 的扩展,这道题的二维矩阵每一层向上都可以看做一个直方图,输入矩阵有多少行,就可以形成多少个直方图,对每个直方图都调用 Largest Rectangle in Histogram 直方图中最大的矩形 中的方法,就可以得到最大的矩形面积。那么这道题唯一要做的就是将每一层构成直方图,由于题目限定了输入矩阵的字符只有 ‘0’ 和 ‘1’ 两种,所以处理起来也相对简单。方法是,对于每一个点,如果是‘0’,则赋0,如果是 ‘1’,就赋 之前的height值加上1。具体参见代码如下:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.empty() || matrix[0].empty()) return 0;
        int res = 0;
        vector<int> height(matrix[0].size());
        for(int i = 0; i < matrix.size(); ++i) {
            for(int j = 0; j < matrix[i].size(); ++j) {
                height[j] = matrix[i][j] == '0' ? 0 : (height[j]+1);
            }
            res = max(res, largestRectangleArea(height));
        }
        return res;
    }
    int largestRectangleArea(vector<int> &height) {
        int res = 0;
        stack<int> s;
        height.push_back(0);
        for (int i = 0; i < height.size(); ++i) {
            if (s.empty() || height[s.top()] <= height[i]) s.push(i);
            else {
                int tmp = s.top();
                s.pop();
                res = max(res, height[tmp] * (s.empty() ? i : (i - s.top() - 1)));
                --i;
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值