牛顿法的特点就是收敛快。但是运用牛顿法需要计算二阶偏导数,而且目标函数的Hesse矩阵可能非正定。为了克服牛顿法的缺点,人们提出了拟牛顿法,它的基本思想是用不包含二阶导数的矩阵近似牛顿法中的Hesse矩阵的逆矩阵。
牛顿法的迭代公式
x(k+1)=x(k)+λd(k)x^{(k+1)}=x^{(k)}+\lambda d^{(k)}x(k+1)=x(k)+λd(k)d(k)=−▽2f(x(k))−1▽f(x(k))d^{(k)}=-\bigtriangledown ^{2}f(x^{(k)})^{-1}\bigtriangledown f(x^{(k)})d(k)=−▽2f(x(k))−1▽f(x(k))
为了构造▽2f(x(k))−1\bigtriangledown ^{2}f(x^{(k)})^{-1}▽2f(x(k))−1的近似矩阵HkH_{k}Hk,我们先来分析▽2f(x(k))−1\bigtriangledown ^{2}f(x^{(k)})^{-1}▽2f(x(k))−1与一阶导数的关系。将f(x)f(x)f(x)在点x(k+1)x^{(k+1)}x(k+1)展开成泰勒级数f(x)=f(x(k+1))+▽f(x(k+1))T(x−x(k+1))f(x)=f(x^{(k+1)})+\bigtriangledown f(x^{(k+1)})^{T}(x-x^{(k+1)}) f(x)=f(x(k+1))+▽f(x(k+1))T(x−x(k+1))+12(x−x(k+1))T▽2f(x(k+1))(x−x(k+1))+\frac{1}{2}(x-x^{(k+1)})^{T} \bigtriangledown ^{2}f(x^{(k+1)})(x-x^{(k+1)}) +21(x−x(k+1))T▽2f(x(k+1))(x−x(k+1))由此可知,在x(k+1)x^{(k+1)}x(k+1)附近有▽f(x)≈▽f(x(k+1))+▽2f(x(k+1))(x−x(k+1))\bigtriangledown f(x) \approx \bigtriangledown f(x^{(k+1)})+\bigtriangledown ^{2}f(x^{(k+1)})(x-x^{(k+1)})▽f(x)≈▽f(x(k+1))+▽2f(x

最低0.47元/天 解锁文章
4278

被折叠的 条评论
为什么被折叠?



