「Leetcode」101.对称二叉树

本文介绍了一种使用C语言判断二叉树是否对称的方法。通过对二叉树进行递归拆分,分别判断左右子树的根节点是否相同及整体结构是否对称,实现了对称二叉树的有效检测。核心思想借鉴了Leetcode 100题的解决方案,通过自定义函数_isSymmetric完成对称性的验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用语言:C语言
题目思路

  • 第一层的根节点可以不用判断
  • 每一次递归都将该树拆分为左树和右树
  • 先判断左树和右树根节点是否一样,再判断左树和右树是否对称
  • 判断两棵树是否对称可以使用之前的思路进行改写「Leetcode」100.相同的树

图片描述
我自己手写的
代码实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

bool _isSymmetric(struct TreeNode* t1, struct TreeNode* t2)//判断是否对称
{
    if(t1==NULL && t2==NULL)
    {
        return true;
    }
    if(t1==NULL || t2==NULL)
    {
        return false;
    }
    if(t1->val != t2->val)
    {
        return false;
    }
    return _isSymmetric(t1->left,t2->right) && _isSymmetric(t1->right,t2->left);
}

bool isSymmetric(struct TreeNode* root)
{
    if(root==NULL)
    {
        return true;
    }
    return _isSymmetric(root->left,root->right);
}

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
### LeetCode 101 对称二叉树 C语言实现 #### 递归方法 为了判断一棵二叉树是否为对称结构,可以采用递归的方法来比较两棵子树。具体来说,要验证整棵树是否对称,则需确认其左子树与右子树互为镜像。 对于任意节点而言,只有当该节点的左右孩子均为空或两者皆不为空且值相等时才满足条件;接着再分别对比当前节点左侧孩子的左子树同右侧孩子的右子树以及左侧孩子的右子树同右侧孩子的左子树之间的关系即可[^4]。 下面是具体的C语言代码: ```c /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ bool isMirror(struct TreeNode* t1, struct TreeNode* t2){ if (t1 == NULL && t2 == NULL) return true; // 如果两个都是NULL则返回true if (t1 == NULL || t2 == NULL) return false; // 只有一个是NULL则不对称 // 值相同的情况下继续检查各自的左右分支是否也构成镜子映射的关系 return (t1->val == t2->val) && isMirror(t1->right, t2->left) && isMirror(t1->left, t2->right); } bool isSymmetric(struct TreeNode* root){ return isMirror(root, root); // 调用辅助函数isMirror来进行实际运算 } ``` 此段程序通过定义了一个名为`isMirror()`的帮助函数用于检测给定的一对节点`t1`和`t2`所代表的子树之间是否存在镜面对应关系,并最终利用它完成整个过程中的核心逻辑处理工作[^5]。 #### 迭代方法 除了上述提到的基于栈帧调用来解决问题的方式外,还可以借助队列这种数据结构以迭代的形式达成同样的目的——即每次取出一对待考察的对象并将其对应的四个方向上的邻接点依次入队等待后续进一步检验直至遍历完毕为止[^1]。 以下是使用广度优先搜索(BFS)策略下的另一种可能解决方案: ```c #include <stdbool.h> #include <stdlib.h> typedef struct QueueNode{ struct TreeNode *data; struct QueueNode *next; }QueueNode; // 初始化队列操作... void initQueue(QueueNode **front, QueueNode **rear); // 入队操作... void enqueue(QueueNode **front, QueueNode **rear, struct TreeNode *item); // 出队操作... struct TreeNode* dequeue(QueueNode **front, QueueNode **rear); bool check(struct TreeNode *u, struct TreeNode *v){ QueueNode *q_front = NULL,* q_rear = NULL; initQueue(&q_front,&q_rear); enqueue(&q_front,&q_rear,u); enqueue(&q_front,&q_rear,v); while(q_front != NULL){ u = dequeue(&q_front,&q_rear); v = dequeue(&q_front,&q_rear); if(!u && !v) continue; if((!u||!v)||(u->val!=v->val)) return false; enqueue(&q_front,&q_rear,u->left); enqueue(&q_front,&q_rear,v->right); enqueue(&q_front,&q_rear,u->right); enqueue(&q_front,&q_rear,v->left); } return true; } bool isSymmetric(struct TreeNode* root){ return check(root,root); } ``` 这段代码实现了非递归版的算法流程,在这里引入了额外的数据容器(如链表形式表示的队列),以便于按照层次顺序逐层访问各个顶点及其关联边的信息从而达到预期效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值