1. 说明
DataFrame是Pandas库中处理表的数据结构,可看作是python中的类似数据库的操作,是Python数据挖掘中最常用的工具。下面介绍DataFrame的一些常用方法。
2. 遍历
1) 代码
-
import pandas as pd -
import math -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3],'data2':[4,5,6]}) -
print(df) -
for idx,item in df.iterrows(): -
print(idx) -
print(item)
2) 结果
-
data1 data2 key -
0 1 4 a -
1 2 5 b -
2 3 6 c -
0 -
data1 1 -
data2 4 -
key a -
Name: 0, dtype: object -
… 略
3. 同时遍历两个数据表
1) 代码
-
import pandas as pd -
import math -
df1=pd.DataFrame({'key':['a','b'],'data1':[1,2]}) -
df2=pd.DataFrame({'key':['c','d'],'data2':[4,5]}) -
for (idx1,item1),(idx2,item2) in zip(df1.iterrows(),df2.iterrows()): -
print("idx1",idx1) -
print(item1) -
print("idx2",idx2) -
print(item2)
2) 结果
-
('idx1', 0) -
data1 1 -
key a -
Name: 0, dtype: object -
('idx2', 0) -
data2 4 -
key c -
Name: 0, dtype: object -
('idx1', 1) -
data1 2 -
key b -
Name: 1, dtype: object -
('idx2', 1) -
data2 5 -
key d -
Name: 1, dtype: object
4. 取一行或多行
1) 代码
-
import pandas as pd -
import math -
df1=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
df2=df1[:1] -
print(df2)
2) 结果
-
data1 key -
0 1 a
5. 取一列或多列
1) 代码
-
import pandas as pd -
import math -
df1=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
df2=pd.DataFrame() -
df2['key2']=df1['key'] -
print(df2)
2) 结果
-
key2 -
0 a -
1 b -
2 c
6. 列连接(横向:变宽):merge
1) 代码
-
import pandas as pd -
df1=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
df2=pd.DataFrame({'key':['a','b','c'],'data2':[4,5,6]}) -
df3=pd.merge(df1,df2)
2) 结果
-
data1 key -
0 1 a -
1 2 b -
2 3 c -
data2 key -
0 4 a -
1 5 b -
2 6 c -
data1 key data2 -
0 1 a 4 -
1 2 b 5 -
2 3 c 6
7. 行连接(纵向:变长):concat
1) 代码
-
import pandas as pd -
df1=pd.DataFrame({'key':['a','b','c'],'data':[1,2,3]}) -
df2=pd.DataFrame({'key':['d','e','f'],'data':[4,5,6]}) -
df3=pd.concat([df1,df2])
2) 结果
-
data key -
0 1 a -
1 2 b -
2 3 c -
data key -
0 4 d -
1 5 e -
2 6 f -
data key -
0 1 a -
1 2 b -
2 3 c -
0 4 d -
1 5 e -
2 6 f
8. 对某列做简单变换
1) 代码
-
import pandas as pd -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
print(df) -
df['data1']=df['data1']+1 -
print(df)
2) 结果
-
data1 key -
0 1 a -
1 2 b -
2 3 c -
data1 key -
0 2 a -
1 3 b -
2 4 c
9. 对某列做复杂变换
1) 代码
-
import pandas as pd -
import math -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
print(df) -
df['data1']=df['data1'].apply(lambda x: math.sin(x)) -
print(df)
2) 结果
-
data1 key -
0 1 a -
1 2 b -
2 3 c -
data1 key -
0 0.841471 a -
1 0.909297 b -
2 0.141120 c
10. 对某列做函数处理
1) 代码
-
import pandas as pd -
def testme(x): -
print("???",x) -
y = x + 3000 -
return y -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
print(df) -
df['data1']=df['data1'].apply(testme) -
print(df)
2) 结果
-
data1 key -
0 1 a -
1 2 b -
2 3 c -
('???', 1) -
('???', 2) -
('???', 3) -
data1 key -
0 3001 a -
1 3002 b -
2 3003 c
11. 用某几列计算生成新列
1) 代码
-
import pandas as pd -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3],'data2':[4,5,6]}) -
print(df) -
df['data3']=df['data1']+df['data2'] -
print(df)
2) 结果
-
data1 data2 key -
0 1 4 a -
1 2 5 b -
2 3 6 c -
data1 data2 key data3 -
0 1 4 a 5 -
1 2 5 b 7 -
2 3 6 c 9
12. 用某几列用函数生成新列
1) 代码
-
import pandas as pd -
import math -
def testme(x): -
print(x['data1'],x['data2']) -
return x['data1'] + x['data2'] -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3],'data2':[4,5,6]}) -
print(df) -
df['data3']=df.apply(testme, axis=1) -
print(df)
2) 结果
-
data1 data2 key -
0 1 4 a -
1 2 5 b -
2 3 6 c -
(1, 4) -
(2, 5) -
(3, 6) -
data1 data2 key data3 -
0 1 4 a 5 -
1 2 5 b 7 -
2 3 6 c 9
13. 删除列
1) 代码
-
import pandas as pd -
import math -
df=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3],'data2':[4,5,6]}) -
print(df) -
df=df.drop(['data2'],axis=1) -
print(df)
2) 结果
-
data1 data2 key -
0 1 4 a -
1 2 5 b -
2 3 6 c -
data1 key -
0 1 a -
1 2 b -
2 3 c
14. One-Hot变换
(把一列枚举型变为多列数值型)
1) 代码
-
import pandas as pd -
import math -
df1=pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3]}) -
print(df1) -
df2=pd.get_dummies(df1['key']) -
print(df2) -
df3=pd.get_dummies(df1) -
print(df3)
2) 结果
-
data1 key -
0 1 a -
1 2 b -
2 3 c -
a b c -
0 1 0 0 -
1 0 1 0 -
2 0 0 1 -
data1 key_a key_b key_c -
0 1 1 0 0 -
1 2 0 1 0 -
2 3 0 0 1
15. 其它常用方法
1) 求均值方差,中位数等
df[f].describe()
2) 求均值
df[f].mean()
3) 求方差
df[f].std()
4) 清除空值
df.dropna()
5) 填充空值
df.fillna()
16、获取行数、列数、索引及第几行第几列的值
df=DataFrame([{‘A’:’11’,’B’:’12’},{‘A’:’111’,’B’:’121’},{‘A’:’1111’,’B’:’1211’}])
print df.columns.size#列数 2
print df.iloc[:,0].size#行数 3
print df.ix[[0]].index.values[0]#索引值 0
print df.ix[[0]].values[0][0]#第一行第一列的值 11
print df.ix[[1]].values[0][1]#第二行第二列的值 121
本文详细介绍了 Python 数据分析库 Pandas 中 DataFrame 的使用方法,包括数据的读取、遍历、连接、变换及各类统计操作等,为初学者提供了全面的指导。
2857

被折叠的 条评论
为什么被折叠?



