CodeForces 733E Sleep in Class

原题


题意:给N个台阶 每个台阶有一个字母 U代表上 D代表下 每个台阶走过一次就会转换,U换成D,D换成U。输出从第N个台阶走出去的步数。以样例中的3为例,就是UUD到UUU到UDU到UDD此时已经走出去了。

题解:我们可以写写画画,然后找到规律,对于当前位置,如果左边的U小于右边包括本身的D的个数,那么最后一定从左边出去,反之从右边出去。至于其他的步数,其实就是(左边的U到当前位置的距离 + 右边的D到当前位置的距离)* 2,然后左边U的个数和右边D的个数取MIN(左边U的个数,右边D的个数),这里面两个都包括自己。

举个例子 对于6 ,个数就是MIN(2,1) = 1, 然后就是左边1个U的距离1 * 2 + 右边一个D的距离1 * 2 = 4, 在加上从右边出去的距离(4 - 2), 答案就是6;

代码:

#include <bits/stdc++.h>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;

int n, num[1000005];
__int64 ans[1000005], sumu[1000005], sumd[1000005];
char ch[1000005];

int main()
{
    mem(ans, 0);
    scanf("%d", &n);
    scanf("%s", ch + 1);
    sumu[0] = 0;
    for(int i = 1;i <= n;i++)
    {
        if(ch[i] == 'U')
            sumu[i] = sumu[i - 1] + 1;
        else
            sumu[i] = sumu[i - 1];
    }
    sumd[n + 1] = 0;
    for(int i = n;i >= 1;i--)
    {
        if(ch[i] == 'D')
            sumd[i] = sumd[i + 1] + 1;
        else
            sumd[i] = sumd[i + 1];
    }
    __int64 w = 0, l = 0, r = 0;
    for(int i = 1;i <= n;i++)
    {
        if(r > l)
            w += (r - l);
        __int64 ll = min(sumu[i], sumd[i]);
        if(r - l > ll)
        {
            while(r - l > ll)
            {
                __int64 pos = num[l + 1];
                w -= (__int64)(i - pos);
                l++;
            }
        }
        ans[i] += 2 * w;
        if(sumu[i - 1] < sumd[i])
            ans[i] += (__int64)i;
        if(ch[i] == 'U')
            num[++r] = i;
    }
    w = 0, l = 0, r = 0;
    for(int i = n;i >= 1;i--)
    {
        if(r > l)
           w += (r - l);
        __int64 ll = min(sumu[i], sumd[i]);
        if(r - l > ll)
        {
            while(r - l > ll)
            {
                int pos = num[l + 1];
                w -= (__int64)(pos - i);
                l++;
            }
        }
        ans[i] += 2 * w;
        if(sumu[i - 1] >= sumd[i])
            ans[i] += (__int64)n - (__int64)i + 1;
        if(ch[i] == 'D')
            num[++r] = i;
    }
    for(int i = 1;i <= n;i++)
        printf("%I64d ", ans[i]);
    printf("\n");
    return 0;
}


### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值