Codeforces AIM TECT Round#1 B DP

本文提供了一道来自Codeforces平台的问题解答,该题要求通过删除或修改序列中的元素使得序列的最大公约数大于1,同时操作成本最低。文章详细介绍了问题的解决思路及动态规划方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给一个序列,有两种操作,1.删除连续的一段(不能删除整个序列),2.把其中一些数+1,或者-1。只能删除一段,删除和改变都有一个权值。要求:删除或改变之后(可以什么都不做)这个序列的gcd值大于1。而且权值最小。
思路:在CF上找了代码参考,dp方程看不懂,然后就自己写了dp方程了。首先,由不能删除整个序列,所以这个序列的gcd值一定是v[1],v[1]-1,v[1]+1,v[n],v[n]-1,v[n]+1的一个质因子。我的dp思路是看以什么结尾。以删除这个数作为结尾,改变这个数作为结尾,还是不变作为结尾。dp方程的意义代码里有写。

http://codeforces.com/contest/623/problem/B

/*********************************************
    Problem : AIM TECT Round#1 B
    Author  : NMfloat
    InkTime (c) NM . All Rights Reserved .
********************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>

#define rep(i,a,b)  for(LL i = (a) ; i <= (b) ; i ++) //遍历
#define rrep(i,a,b) for(LL i = (b) ; i >= (a) ; i --) //反向遍历
#define repS(it,p) for(auto it = p.begin() ; it != p.end() ; it ++) //遍历一个STL容器
#define repE(p,u) for(Edge * p = G[u].first ; p ; p = p -> next) //遍历u所连接的点
#define cls(a,x)   memset(a,x,sizeof(a))
#define eps 1e-8

using namespace std;

const int MOD = 1e9+7;
// const LL INF = 0x3f3f3f3f;
const int MAXN = 1e6+5;
const int MAXE = 2e5+5;

typedef long long LL;
typedef unsigned long long ULL;

LL T,n,m;

LL fx[] = {0,1,-1,0,0};
LL fy[] = {0,0,0,-1,1};

LL remove_cost , change_cost;
LL v[MAXN];
LL cost[MAXN];
LL dp[MAXN][3][2];
LL INF = (LL)1e18;

void factor(LL num , vector<LL> & p) { //获取一个数的质因子,并存进一个数组里。
    for(LL i = 2 ; i * i <= num ; i ++) {
        if(num % i == 0) {
            p.push_back(i); 
            while(num % i == 0) num /= i;
        }
    }
    if(num != 1) p.push_back(num);
}

void input() {
    rep(i,1,n) scanf("%I64d",&v[i]);
}

void solve() {
    vector<LL>p;
    factor(v[1],p); factor(v[1]-1,p); factor(v[1]+1,p);
    factor(v[n],p); factor(v[n]-1,p); factor(v[n]+1,p);
    sort(p.begin(), p.end());//排序
    p.erase(unique(p.begin(), p.end()),p.end()); //消除重复
    LL ret = INF;
    repS(it,p) {
        LL prime = *it;
        rep(i,1,n) {
            if(v[i] % prime == 0) cost[i] = 0;
            else if((v[i]-1) % prime == 0 || (v[i] + 1) % prime == 0) cost[i] = 1;
            else cost[i] = 2;
        }
        if(cost[1] == 2 && cost[n] == 2) continue;
        //dp[i][0][0] 代表以cost[i] == 0为结尾 之前没有删除过元素的最小代价
        //dp[i][0][1] 代表以cost[i] == 0为结尾 之前删除过一段元素的最小代价
        //dp[i][1][0] 代表以cost[i] == 1为结尾 之前没有删除过元素的最小代价
        //dp[i][1][1] 代表以cost[i] == 1为结尾 之前删除过一段元素的最小代价
        //dp[i][2][0] 代表以cost[i] == 2为结尾 之前删除或没有删除过元素的最小代价      
        //dp[i][2][1] 无意义
        rep(k,1,n) rep(i,0,2) rep(j,0,1) dp[k][i][j] = INF;
        dp[0][0][0] = 0;
        rep(i,1,n) {
            if(cost[i] == 0) {
                dp[i][0][0] = min(dp[i-1][0][0],dp[i-1][1][0]);
                dp[i][0][1] = min(dp[i-1][0][1],min(dp[i-1][1][1],dp[i-1][2][0]));
                dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
            }
            else if(cost[i] == 1) {
                dp[i][1][0] = min(dp[i-1][0][0],dp[i-1][1][0]) + change_cost;
                dp[i][1][1] = min(dp[i-1][0][1],min(dp[i-1][1][1],dp[i-1][2][0])) + change_cost;
                dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
            }
            else if(cost[i] == 2) {
                dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
            }
        }
        rep(i,0,2) rep(j,0,1) ret = min(ret,dp[n][i][j]);
    }
    printf("%I64d\n",ret);
}

int main(void) {
    //freopen("a.in","r",stdin);
    while(~scanf("%I64d %I64d %I64d",&n,&remove_cost,&change_cost)) {
        input();
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值