题意:给一个序列,有两种操作,1.删除连续的一段(不能删除整个序列),2.把其中一些数+1,或者-1。只能删除一段,删除和改变都有一个权值。要求:删除或改变之后(可以什么都不做)这个序列的gcd值大于1。而且权值最小。
思路:在CF上找了代码参考,dp方程看不懂,然后就自己写了dp方程了。首先,由不能删除整个序列,所以这个序列的gcd值一定是v[1],v[1]-1,v[1]+1,v[n],v[n]-1,v[n]+1的一个质因子。我的dp思路是看以什么结尾。以删除这个数作为结尾,改变这个数作为结尾,还是不变作为结尾。dp方程的意义代码里有写。
http://codeforces.com/contest/623/problem/B
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define rep(i,a,b) for(LL i = (a) ; i <= (b) ; i ++)
#define rrep(i,a,b) for(LL i = (b) ; i >= (a) ; i --)
#define repS(it,p) for(auto it = p.begin() ; it != p.end() ; it ++)
#define repE(p,u) for(Edge * p = G[u].first ; p ; p = p -> next)
#define cls(a,x) memset(a,x,sizeof(a))
#define eps 1e-8
using namespace std;
const int MOD = 1e9+7;
const int MAXN = 1e6+5;
const int MAXE = 2e5+5;
typedef long long LL;
typedef unsigned long long ULL;
LL T,n,m;
LL fx[] = {0,1,-1,0,0};
LL fy[] = {0,0,0,-1,1};
LL remove_cost , change_cost;
LL v[MAXN];
LL cost[MAXN];
LL dp[MAXN][3][2];
LL INF = (LL)1e18;
void factor(LL num , vector<LL> & p) {
for(LL i = 2 ; i * i <= num ; i ++) {
if(num % i == 0) {
p.push_back(i);
while(num % i == 0) num /= i;
}
}
if(num != 1) p.push_back(num);
}
void input() {
rep(i,1,n) scanf("%I64d",&v[i]);
}
void solve() {
vector<LL>p;
factor(v[1],p); factor(v[1]-1,p); factor(v[1]+1,p);
factor(v[n],p); factor(v[n]-1,p); factor(v[n]+1,p);
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()),p.end());
LL ret = INF;
repS(it,p) {
LL prime = *it;
rep(i,1,n) {
if(v[i] % prime == 0) cost[i] = 0;
else if((v[i]-1) % prime == 0 || (v[i] + 1) % prime == 0) cost[i] = 1;
else cost[i] = 2;
}
if(cost[1] == 2 && cost[n] == 2) continue;
rep(k,1,n) rep(i,0,2) rep(j,0,1) dp[k][i][j] = INF;
dp[0][0][0] = 0;
rep(i,1,n) {
if(cost[i] == 0) {
dp[i][0][0] = min(dp[i-1][0][0],dp[i-1][1][0]);
dp[i][0][1] = min(dp[i-1][0][1],min(dp[i-1][1][1],dp[i-1][2][0]));
dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
}
else if(cost[i] == 1) {
dp[i][1][0] = min(dp[i-1][0][0],dp[i-1][1][0]) + change_cost;
dp[i][1][1] = min(dp[i-1][0][1],min(dp[i-1][1][1],dp[i-1][2][0])) + change_cost;
dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
}
else if(cost[i] == 2) {
dp[i][2][0] = min(dp[i-1][0][0],min(dp[i-1][1][0],dp[i-1][2][0])) + remove_cost;
}
}
rep(i,0,2) rep(j,0,1) ret = min(ret,dp[n][i][j]);
}
printf("%I64d\n",ret);
}
int main(void) {
while(~scanf("%I64d %I64d %I64d",&n,&remove_cost,&change_cost)) {
input();
solve();
}
return 0;
}