""" pandas 1.数据的生成 2.查看基础信息 3.根据行列查询 4.填充 5.数据根据字段进行排序,生成新的文件 """ import pandas as pd df = pd.DataFrame( [ [1001,"xiaoming",20,"nan"], [1002,"tom",20,None], [1003,"xiaohong",20,"nan"], [1004,"xioalan",None,"nan"], [1005,"xiaowan",20,"nv"] ],columns=['编号','姓名','年龄','性别'] ) #1.二维表,有行和列索引 print(df) print("===========",df.loc[0]) df.to_csv("test.txt") #2.查询 print(df.shape)#查看行数列数 print(df.info())#查看基础信息 print(df.describe())#计算数字列 print(df.head(3))#查看前三行 print(df.tail(3))#查看后三行 #3.根据行列查询 df2 = pd.read_csv("train.csv") print(df2.shape)#查看行数列数 print(df2.info())#查看基础信息 print(df2.describe())#计算数字列 print(df2.head(3))#查看前三行 print(df2.tail(3))#查看后三行 #按列查询 print(df2['姓名']) print(df2.姓名) #按照行列查询 print(df2.loc[1:3,:])#行,列 print(df2.loc[1:3,'姓名':'性别'])#行,列 print(df2.loc[:,['姓名','性别','年龄']])#行,列 print(df2.loc[[1,3],['姓名','性别','年龄']])#行,列 #查询年龄大于18岁的所有行 print(df2[df2['年龄']>18]) print(df2['性别'].unique()) print(df2['年龄'].count()) print(df2['年龄'].sum()) print(df2['年龄'].max()) print(df2['年龄'].mean()) #填充 min = df2['年龄'].min() df2['年龄']=df2['年龄'].fillna(min) print(df2) df2['性别'] = df2['性别'].fillna(df2['性别'].mode()[0]) print(df2) #5.根据字段进行排序,生成一个新的文件 df3=df2.sort_values(by="年龄",ascending=True) print(df3) df3.to_csv("new.csv")#生成新的文件
pandas
最新推荐文章于 2025-05-08 09:00:00 发布