在边缘使用MRAM是其另一个潜在应用

MRAM与BNN在边缘AI的应用

MRAM通过外加电压控制的磁体方向来存储数据的每个bit位。如果电压低于翻转bit位所需的电压,则可能只有一位翻转。我们不希望存在这种随机性,因此采用更高电压驱动MRAM来预防这种情况发生。尽管如此,某些AI应用仍可以利用这种固有的随机性(可以将其视为随机选择或生成数据的过程)。

它可将所有权重和激活精度降低到1位,从而大大降低远边缘应用的计算和功耗要求。根据网络重新训练的方式,有可能需要进行精度的权衡取舍。尽管降低了精度,神经网络仍可以可靠地运行。

二元神经网络(BNN)的独特之处在于,即使一个数字是-1或+1的确定性减小了,它仍可以可靠地运行。即便引入被错误写入的存储位“误码率”降低了确定性,BNN仍然能够以较高的精度运行。

MRAM可以在低电压电平下自然地以受控方式引入误码率,在保持精度的同时进一步降低功耗要求。其关键在于确定最低电压和最短时间下的最佳精度。这意味着最高能效。

尽管这项技术也适用于更高精度神经网络,但它尤其适用于BNN,因为MRAM单元具有两种状态,恰好与BNN中的二值状态相匹配。在边缘使用MRAM是其另一个潜在应用。

对于边缘AI,MRAM能够在不要求高性能的应用中以较低的电压运行,但提高能效和存储器耐用性非常重要。此外MRAM固有的非易失性不需电源也可保存数据。

还有一种“统一存储”,这种新兴存储既可以充当嵌入式闪存,又可以替代sram,在节省芯片面积的同时又避免了SRAM固有的静态功耗。

分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值