number number number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 274 Accepted Submission(s): 174
Problem Description
We define a sequence
F
:
⋅ F0=0,F1=1 ;
⋅ Fn=Fn−1+Fn−2 (n≥2) .
Give you an integer k , if a positive number n can be expressed by
n=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤ak , this positive number is mjf−good . Otherwise, this positive number is mjf−bad .
Now, give you an integer k , you task is to find the minimal positive mjf−bad number.
The answer may be too large. Please print the answer modulo 998244353.
⋅ F0=0,F1=1 ;
⋅ Fn=Fn−1+Fn−2 (n≥2) .
Give you an integer k , if a positive number n can be expressed by
n=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤ak , this positive number is mjf−good . Otherwise, this positive number is mjf−bad .
Now, give you an integer k , you task is to find the minimal positive mjf−bad number.
The answer may be too large. Please print the answer modulo 998244353.
Input
There are about 500 test cases, end up with EOF.
Each test case includes an integer k which is described above. ( 1≤k≤109 )
Each test case includes an integer k which is described above. ( 1≤k≤109 )
Output
For each case, output the minimal
mjf−bad
number mod 998244353.
Sample Input
1
Sample Output
4
Source
Recommend
liuyiding
#include <bits/stdc++.h>
using namespace std;
const long long N = 2, Mod = 998244353;
long long m, n;
struct xx{
long long a[N][N];
} ori,res;
xx mul(xx x,xx y){
xx temp;
memset(temp.a, 0, sizeof(temp.a));
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
for(int k = 0; k < N; k++){
temp.a[i][j] += x.a[i][k]*y.a[k][j];
temp.a[i][j] %= Mod;
}
}
}
return temp;
}
void init(){
ori.a[0][0] = 1, ori.a[0][1] = 1;
ori.a[1][0] = 1, ori.a[1][1] = 0;
res.a[0][0] = 1, res.a[0][1] = 0;
res.a[1][0] = 0, res.a[1][1] = 1;
}
long long calc(long long k){
while(k){
if(k & 1) res = mul(res, ori);
ori = mul(ori, ori);
k >>= 1;
}
return res.a[0][0];
}
int main(){
while(scanf("%lld", &m) == 1){
init();
n = 4+(m-1)*2;
printf("%lld\n", calc(n)-1);
}
}
探讨了如何通过矩阵快速幂算法找到对于给定k值的最小mjf-bad数,该数无法由k个斐波那契数之和表示,并提供了一种高效的计算方法。
402

被折叠的 条评论
为什么被折叠?



