题目:
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:Given the below binary tree and
sum
= 22
,
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) {
return false;
}
if (root.left == null && root.right == null) {
if (sum-root.val == 0)
return true;
return false;
}
sum -= root.val;
if (hasPathSum(root.left, sum))
return true;
if (hasPathSum(root.right, sum))
return true;
sum += root.val;
return false;
}
在精简一下代码:
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) return false;
else if (root.left == null && root.right == null && sum == root.val) return true;
return hasPathSum(root.left, sum-root.val) || hasPathSum(root.right, sum-root.val);
}
然后再看第二个,不仅需要判断是否有,还需要把全部的路径输出,明显是回溯法。
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> lists = new ArrayList<List<Integer>>();
dfs(lists, new ArrayList<Integer>(), root, sum);
return lists;
}
private void dfs(List<List<Integer>> lists, List<Integer> list, TreeNode root, int sum) {
if (root == null) return;
list.add(root.val);
if (root.left == null && root.right == null && root.val == sum) {
lists.add(new ArrayList<Integer>(list));
list.remove(list.size()-1);
return;
}
dfs(lists, list, root.left, sum-root.val);
dfs(lists, list, root.right, sum-root.val);
list.remove(list.size()-1);
}
private void dfs(List<List<Integer>> lists, List<Integer> list, TreeNode root, int sum) {
if (root == null) return;
list.add(root.val);
if (root.left == null && root.right == null && root.val == sum) {
lists.add(new ArrayList<Integer>(list));
return;
}
List<Integer> temp = new ArrayList<Integer>(list);
dfs(lists, list, root.left, sum-root.val);
dfs(lists, temp, root.right, sum-root.val);
}
private void dfs(List<List<Integer>> lists, List<Integer> list, TreeNode root, int sum) {
sum -= root.val;
list.add(root.val);
if (root.left == null && root.right == null && sum == 0) {
lists.add(new ArrayList<>(list));
return;
}
if (root.left != null) {
dfs(lists, list, root.left, sum);
list.remove(list.size()-1);
}
if (root.right != null) {
dfs(lists, list, root.right, sum);
list.remove(list.size()-1);
}
}
可以细细体会一下,这几个dfs方法有什么不同。
如果要求每次的起点不一定是root呢?也就是起点也可以任意,终点也可以任意。找到符合sum的所以路径:
public void findSum(TreeNode root, int sum, List<Integer> buffer, int level) {
if (root == null) return;
int temp = sum;
buffer.add(root.val);
for (int i = level; i > -1; i--) {
temp -= buffer.get(i);
if (temp == 0) print(buffer, i, level);
}
List<Integer> c1 = new ArrayList<Integer>(buffer);
List<Integer> c2 = new ArrayList<Integer>(buffer);
findSum(root.left, sum, c1, level+1);
findSum(root.right, sum, c2, level+1);
}
private void print(List<Integer> buffer, int level, int i) {
for (int j = level; j <= i; j++) {
System.out.print(buffer.get(j)+" ");
}
System.out.println();
}
其实方法基本是一样的,只不过这个每次都保存路径,从当前节点向上找,直到根节点。这里有个思维的变换,不在以root为起点找,而是以node为结束点找。