Expectation Algebra
https://www.kalmanfilter.net/background2.html
I am going to extensively use the expectation algebra rules for Kalman Filter equation derivations. If you are interested in understanding the derivations, you need to master expectation algebra. You already know what a random variable is and what an expected value (or expectation) is. If not, please read the previous background break page.
Basic Expectation Rules
The expectation is denoted by the Capital letter E. The expectation of the random variable E ( X ) E(X) E(X) equals the mean of the random variable:
E ( X ) = μ X E(X) = \mu_X E(X)=μX
Here are some basic expectation rules:

Variance and Covariance Expectation Rules
The following table includes the variance and covariance expectation rules.

本文深入探讨了期望代数在卡尔曼滤波方程推导中的重要性,强调了掌握期望代数对于理解卡尔曼滤波算法的必要性。基本期望规则包括期望值等于随机变量的均值,以及关于方差和协方差的期望规则。文中还特别指出常数的方差为0,以及变量加常数不改变其方差的规则,并简要介绍了向量的协方差矩阵及其计算方法。
最低0.47元/天 解锁文章
1008

被折叠的 条评论
为什么被折叠?



