1.固定随机种子
tf.set_random_seed(2)
或者在代码的顶端其他之前要有下面四行代码
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
2.为网络的初始值赋固定值,这里以lstm为例
#首先,利用trainable_variable函数找出所有训练变量的名称和值,并打印出来
variable_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variable_names)
for k, v in zip(variable_names, values):
print("Variable: ", k)
print("Shape: ", v.shape)
print(v)
#然后找出需要赋值的变量名称,在逐个将其与所有变量的名称比较,若相同,则利用tf.assign(variable,num)为其赋值,然后运行run即可赋值
for v in tf.trainable_variables():
if v.name=='rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0':
sess.run(tf.assign(v, [ 1.0 for i in range(512)]))