POJ - 2010 Moo University - Financial Aid(优先队列)

本文介绍了一种通过筛选申请者来最大化一组学生的中位数考试分数的方法,特别关注于资源有限的情况下如何选择最优的学生组合。

Financial Aid
Time limit 1000 ms
Memory limit 30000 kB

Description
Bessie noted that although humans have many universities they can attend, cows have none. To remedy this problem, she and her fellow cows formed a new university called The University of Wisconsin-Farmside,”Moo U” for short.

Not wishing to admit dumber-than-average cows, the founders created an incredibly precise admission exam called the Cow Scholastic Aptitude Test (CSAT) that yields scores in the range 1..2,000,000,000.

Moo U is very expensive to attend; not all calves can afford it.In fact, most calves need some sort of financial aid (0 <= aid <=100,000). The government does not provide scholarships to calves,so all the money must come from the university’s limited fund (whose total money is F, 0 <= F <= 2,000,000,000).

Worse still, Moo U only has classrooms for an odd number N (1 <= N <= 19,999) of the C (N <= C <= 100,000) calves who have applied.Bessie wants to admit exactly N calves in order to maximize educational opportunity. She still wants the median CSAT score of the admitted calves to be as high as possible.

Recall that the median of a set of integers whose size is odd is the middle value when they are sorted. For example, the median of the set {3, 8, 9, 7, 5} is 7, as there are exactly two values above 7 and exactly two values below it.

Given the score and required financial aid for each calf that applies, the total number of calves to accept, and the total amount of money Bessie has for financial aid, determine the maximum median score Bessie can obtain by carefully admitting an optimal set of calves.

Input

  • Line 1: Three space-separated integers N, C, and F

  • Lines 2..C+1: Two space-separated integers per line. The first is the calf’s CSAT score; the second integer is the required amount of financial aid the calf needs

Output
* Line 1: A single integer, the maximum median score that Bessie can achieve. If there is insufficient money to admit N calves,output -1.

Sample Input
3 5 70
30 25
50 21
20 20
5 18
35 30

Sample Output
35

题目大意:有N只牛,你只能从中选C只,且你只有F单位的资金能资助他,你的目的是使得资助的牛的分数的中位数最大。

最近不知怎么的,拿到类似的题目就想暴力解,但也就是想想 ヽ(・ω・。)ノ
这题的意思也有点枚举的意思。首先先按照分数对牛进行排序,(这里借助了优先队列)然后从后往前一个个枚举过来,看第i只牛左边n/2的最小值和右边n/2的最小值的和再加上第i只得资助金额,如果小于F,那么就是最大的啦╰(°▽°)╯

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
    int s,f;
    bool operator <(const node &x) const
    {
        return f<x.f;
    }
}cow[100010];

int cmp(node a,node b)
{
    return a.s<b.s;
}

int n,c,f;
int l[100005];
int r[100005];
int suml,sumr;
int main()
{
    scanf("%d%d%d",&n,&c,&f);
    for(int i=0;i<c;i++)
        scanf("%d%d",&cow[i].s,&cow[i].f);
    sort(cow,cow+c,cmp);
    priority_queue<node>ql,qr;
    suml=0;
    sumr=0;
    for(int i=0;i<c;i++)
    {
        if(i<n/2)
        {
            suml+=cow[i].f;
            ql.push(cow[i]);
        }
        else
        {
            l[i]=suml;
            if(cow[i].f<ql.top().f)
            {
                suml-=ql.top().f;
                suml+=cow[i].f;
                ql.pop();
                ql.push(cow[i]);
            }
        }
    }
    for(int i=c-1;i>=0;i--)
    {
        if(i>c-1-n/2)
        {
            qr.push(cow[i]);
            sumr+=cow[i].f;
        }
        else
        {
            r[i]=sumr;
            if(cow[i].f<qr.top().f)
            {
                sumr-=qr.top().f;
                sumr+=cow[i].f;
                qr.pop();
                qr.push(cow[i]);
            }
        }
    }
    int sum=-1;
    for(int i=c-1-n/2;i>=n/2;i--)
    {
        if(l[i]+r[i]+cow[i].f<=f)
        {
            sum=cow[i].s;
            break;
        }
    }
    printf("%d\n",sum);
}

ps.一定要看清题目啊啊啊啊!如果不存在符合的情况,要输出-1的啊啊啊啊啊啊,我一开始初始化为0,wa了三遍啊 (´Д`)

【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值