Problem Description
Recently, Bob has just learnt a naive sorting algorithm: merge sort. Now, Bob receives a task from Alice.
Alice will give Bob N sorted sequences, and the i-th sequence includes ai elements. Bob need to merge all of these sequences. He can write a program, which can merge no more thank sequences in one time. The cost of a merging operation is the sum of the length of these sequences. Unfortunately, Alice allows this program to use no more thanT cost. So Bob wants to know the smallest k to make the program complete in time.
Alice will give Bob N sorted sequences, and the i-th sequence includes ai elements. Bob need to merge all of these sequences. He can write a program, which can merge no more thank sequences in one time. The cost of a merging operation is the sum of the length of these sequences. Unfortunately, Alice allows this program to use no more thanT cost. So Bob wants to know the smallest k to make the program complete in time.
Input
The first line of input contains an integer
t0,
the number of test cases. t0
test cases follow.
For each test case, the first line consists two integers N (2≤N≤100000) and T (∑Ni=1ai<T<231).
In the next line there are N integers a1,a2,a3,...,aN(∀i,0≤ai≤1000).
For each test case, the first line consists two integers N (2≤N≤100000) and T (∑Ni=1ai<T<231).
In the next line there are N integers a1,a2,a3,...,aN(∀i,0≤ai≤1000).
Output
For each test cases, output the smallest
k.
Sample Input
1 5 25 1 2 3 4 5
Sample Output
3
对于二叉哈夫曼树,每次只需取两个最小的合并,再将合并的点放回队列,重复操作就ok了。
而k叉哈夫曼树,每次选择k个权值最小的点容易让最后一次合并的时候的点不足k个。分析:
每次删除k个点又加入1个点可知每次删除了k-1个点,而最后剩余1个点,可知总共删了n-1个点,
所以为保证每次都有k个点可选,那么(n-1)%(k-1)==0。
如果(n-1)%(k-1)!=0,,那么就要再放入(k-1-(n-1)%(k-1))个权值为0的虚拟点,
这样就保证每次都有k个点可选。
二分答案+优先队列时间复杂度n*log*log,利用合并的非递减性,设置两个queue,一个为原本的队列,
另一个用来放合并后的值,每次只需从这两个队列头取最小值就ok了,时间复杂度n*log。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100000+10;
int a[maxn];
queue<ll> que;
queue<ll> q;
inline ll sol(){
if(que.size()&&q.size()){
if(que.front()<q.front()){
ll t=que.front();
que.pop();
return t;
}
else {
ll t=q.front();
q.pop();
return t;
}
}
if(!que.empty()){
ll t=que.front();
que.pop();
return t;
}
else{
ll t=q.front();
q.pop();
return t;
}
}
int main(){
int t;scanf("%d",&t);
while(t--){
int n;ll T;
scanf("%d %I64d",&n,&T);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
sort(a,a+n);
int l=2,r=n;
while(r-l>=1){
int mid=l+r>>1;
int cnt=0;
if((n-1)%(mid-1)!=0)cnt=(mid-1-(n-1)%(mid-1));
while(!q.empty())q.pop();
while(!que.empty())que.pop();
for(int i=0;i<cnt;i++)que.push(0);
for(int i=0;i<n;i++){
que.push(a[i]);
}
ll ans=0;
while(que.size()+q.size()>1){
ll sum=0;
for(int i=0;i<mid;i++){
ll tmp=sol();
sum+=tmp;
}
ans+=sum;
q.push(sum);
}
if(ans<=T)r=mid;
else l=mid+1;
}
printf("%d\n",r);
}
return 0;
}