from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
def nb_news():
#1)加载数据
news=fetch_20newsgroups(data_home=r"D:\桌面上的文件\数据挖掘",subset="all")
#2)数据划分
x_train,x_test,y_train,y_test=train_test_split(news.data,news.target)
#3)文本特征抽取
transfer=TfidfVectorizer()
transfer.fit_transform(x_train)
transfer.transform(x_test)
#4)构建朴素贝叶斯算法预估器
estimator=MultinomialNB()
estimator.fit(x_train,y_train)
# 5)模型评估
# 方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("结果:", y_predict)
print("直接比对真实值和预测值", y_test == y_predict)
# 方法二:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:", score)
return None
if __name__ == '__main__':
# 执行函数
nb_news()
用朴素贝叶斯算法对sklearn自带的新闻进行分类
最新推荐文章于 2024-09-10 13:53:19 发布