Logistic Regression(逻辑回归)是机器学习中的经典任务,表示为下面一个优化问题:
min w f ( w ) \min_w f(w) wminf(w)
其中,
f ( w ) = λ 2 ∥ w ∥ 2 + 1 n ∑ i = 1 n ln ( 1 + e − y i x i T w ) = λ 2 ∥ w ∥ 2 + 1 n ∑ i = 1 n f i ( w ) f i ( w ) = ln ( 1 + e − y i x i T w ) ∇ f i ( w ) = − e − y i x i T w 1 + e − y i x i T w ⋅ y i x i , \begin{aligned} f(w)&= \frac{\lambda}{2}\|w\|^2+\frac{1}{n}\sum_{i=1}^{n}\ln(1+e^{-y_ix_i^Tw})\\ &= \frac{\lambda}{2}\|w\|^2+\frac{1}{n}\sum_{i=1}^{n}f_i(w)\\ f_i(w)&=\ln(1+e^{-y_ix_i^Tw}) \\ \nabla f_i(w)&=-\frac{e^{-y_ix_i^Tw}}{1+e^{-y_ix_i^Tw}}\cdot y_ix_i, \\ \end{aligned} f(w)fi(w)∇fi(w)=2λ∥w∥2+n1i=1∑nln(1+e−yixiTw)=2λ∥w∥2+n1i=1∑nfi(w)=ln(1+e−yixiTw)=−1+e−yixiTw<
Logistic Regression的Lipchitz连续梯度
于 2018-11-08 17:01:06 首次发布