Logistic Regression(逻辑回归)是机器学习中的经典任务,表示为下面一个优化问题:
minwf(w)\min_w f(w)wminf(w)
其中,
f(w)=λ2∥w∥2+1n∑i=1nln(1+e−yixiTw)=λ2∥w∥2+1n∑i=1nfi(w)fi(w)=ln(1+e−yixiTw)∇fi(w)=−e−yixiTw1+e−yixiTw⋅yixi,\begin{aligned} f(w)&= \frac{\lambda}{2}\|w\|^2+\frac{1}{n}\sum_{i=1}^{n}\ln(1+e^{-y_ix_i^Tw})\\ &= \frac{\lambda}{2}\|w\|^2+\frac{1}{n}\sum_{i=1}^{n}f_i(w)\\ f_i(w)&=\ln(1+e^{-y_ix_i^Tw}) \\ \nabla f_i(w)&=-\frac{e^{-y_ix_i^Tw}}{1+e^{-y_ix_i^Tw}}\cdot y_ix_i, \\ \end{aligned}f(w)fi(w)∇fi(w)=2λ∥w∥2+n1i=1∑nln(1+e−yixiTw)=2λ∥w∥2+n1i=1∑nfi(w)=ln(1+e−yixiTw)=−1+e−yixiTwe−yi</
Logistic Regression的Lipchitz连续梯度
于 2018-11-08 17:01:06 首次发布