Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solving complex problems by breaking them down into simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub-problems which are only slightly smaller and optimal substructure.
Ok, here is the problem. Given an array with N integers, find a continuous subsequence whose sum’s absolute value is the smallest. Very typical DP problem, right?
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case includes an integer N. Then a line with N integers Ai follows.
Technical Specification
- 1 <= T <= 100
- 1 <= N <= 1 000
- -100 000 <= Ai <= 100 000
Output
For each test case, output the case number first, then the smallest absolute value of sum.
Sample Input
2
2
1 -1
4
1 2 1 -2
Sample Output
Case 1: 0
Case 2: 1
这个题也是dp的题就是让你算出一个连续的最长绝对值序列,就是从第一个开始枚举,这里有个小问题,就是在dp数列中要保留原来的值,而不是abs的值,否者后面会出现问题 dp[i][j]=dp[i][j-1]+a[j]
```cpp
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int dp[1005][1005];
int a[1005];
int main()
{
int t,k=0;
cin>>t;
while(t--)
{
k++;
int n;
cin>>n;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
dp[i][i]=a[i];
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
dp[i][j]=dp[i][j-1]+a[j];
int mixn=99999999;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
if(mixn>abs(dp[i][j]))
mixn=abs(dp[i][j]);
printf("Case %d: %d\n",k,mixn);
}
return 0;
}