题意:给定一个数组,输入i, j, k,也就是询问i到j之间第k大的数
思路:暴力,主席树(模板题);
1、
暴力就是对每一个数标好顺序,然后排序(这时候预处理完成);
对于每个查询,暴力的扫一遍,遇到序号在i,j之间的数就k--,k=0是,就是所找的数
/*暴力法
Time: 7563MS
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100005;
struct node{
int val,id;
}nod[N];
bool cmp(node a, node b){
return a.val < b.val;
}
int main(){
int n, m, l, r, k;
while(~scanf("%d%d",&n,&m)){
for(int i = 1; i <= n; i++){
scanf("%d", &nod[i].val);
nod[i].id = i;
}
sort(nod+1, nod+n+1, cmp);
for(int i = 0; i < m; i++){
scanf("%d%d%d", &l, &r, &k);
for(int j = 1; j <= n; j++){
if(nod[j].id >= l && nod[j].id <= r) k--;
if(k == 0){
printf("%d\n", nod[j].val);
break;
}
}
}
}
return 0;
}
2、
用a[N]存储原来的数字,a2[size]存储排好序的数字;
主席树,T[i]都维护着size大小的线段树,而该线段树维护的信息为:在a[i] 到a[n]数字集合中,size种数字分别出现的次数。
我是看着这个理解的
http://blog.youkuaiyun.com/sprintfwater/article/details/9162041
1422MS
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 100005;
const int M = N * 30;
int n,q,m,tot;
int a[N],t[N];
int T[M],lson[M],rson[M],c[M];
void Init_hash(){
for(int i = 1; i <= n ;i++)
t[i] = a[i];
sort(t+1, t+n+1);
m=unique(t+1,t+1+n)-t-1;
}
int build(int l, int r) {
int root = tot++;
c[root] = 0;
if(l != r){
int mid = (l+r)>>1;
lson[root] = build(l, mid);
rson[root] = build(mid+1, r);
}
return root;
}
int hash(int x){
return lower_bound(t+1, t+1+m, x)-t;
}
int update(int root, int pos, int val){
int newroot = tot++, tmp = newroot;
c[newroot] = c[root] + val;
int l = 1, r = m;
while(l < r){
int mid = (l+r)>>1;
if(pos <= mid){
lson[newroot] = tot++;
rson[newroot] = rson[root];
newroot = lson[newroot];
root = lson[root];
r = mid;
}
else {
rson[newroot] = tot++;
lson[newroot] = lson[root];
newroot = rson[newroot];
root = rson[root];
l = mid+1;
}
c[newroot] = c[root] + val;
}
return tmp;
}
int query(int lr, int rr, int k){
int l = 1, r = m;
while( l < r){
int mid = (l+r)>>1;
if(c[lson[lr]] - c[lson[rr]] >= k){
r = mid;
lr = lson[lr];
rr = lson[rr];
}
else {
l = mid + 1;
k -= c[lson[lr]] - c[lson[rr]];
lr = rson[lr];
rr = rson[rr];
}
}
return l;
}
int main(){
while(~scanf("%d%d",&n,&q)){
tot=0;
for(int i = 1; i <= n; i++)
scanf("%d",a+i);
Init_hash();
T[n+1] = build(1, m);
for(int i = n; i ; i--){
int pos = hash(a[i]);
T[i] = update(T[i+1],pos,1);
}
while(q--)
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",t[query(T[l],T[r+1],k)]);
}
}
}