Counting Cliques
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2717 Accepted Submission(s): 984
Problem Description
A clique is a complete graph, in which there is an edge between every pair of the vertices. Given a graph with N vertices and M edges, your task is to count the number of cliques with a specific size S in the graph.
Input
The first line is the number of test cases. For each test case, the first line contains 3 integers N,M and S (N ≤ 100,M ≤ 1000,2 ≤ S ≤ 10), each of the following M lines contains 2 integers u and v (1 ≤ u < v ≤ N), which means there is an edge between vertices u and v. It is guaranteed that the maximum degree of the vertices is no larger than 20.
Output
For each test case, output the number of cliques with size S in the graph.
Sample Input
3 4 3 2 1 2 2 3 3 4 5 9 3 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 6 15 4 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6
Sample Output
3 7 15
Source
求顶点数为s的完全图的个数。
POINT:
单向建边,由小往大连,从1开始找模拟,然后从2,从3。就ok了。
用邻接表。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
using namespace std;
#define LL long long
const int maxn = 111;
int n,m,s;
vector<int>G[maxn];
int flag[maxn];
int pre[maxn];
int sz;
int ans;
int mp[maxn][maxn];
int check(int now){
for(int i=1;i<=sz;i++){
if(mp[now][pre[i]]!=1) return 0;
}
return 1;
}
void dfs(int now)
{
if(sz==s){
ans++;
return;
}
for(int i=0;i<G[now].size();i++){
int v=G[now][i];
if(check(v)){
pre[++sz]=v;
dfs(v);
sz--;
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
ans=0;
memset(flag,0,sizeof flag);
memset(mp,0,sizeof mp);
scanf("%d %d %d",&n,&m,&s);
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=m;i++){
int u,v;
scanf("%d %d",&u,&v);
mp[u][v]=mp[v][u]=1;
int a=max(u,v);
int b=u+v-a;
G[b].push_back(a);
}
for(int i=1;i<=n;i++){
pre[sz=1]=i;
dfs(i);
}
printf("%d\n",ans);
}
}