263A.Beautiful Matrix

题目

在这里插入图片描述

翻译

题目

    你有一个由24个0和1个1组成的5×5矩阵。让我们从上至下按1至5作为矩阵行的索引,从左到右按1至5作为矩阵列的索引。首先,你可以将以下两个转换之一应用于矩阵:

  1. 交换矩阵两个相邻的行,也就是说,行为索引i(1 ≤ i < 5)的第i行和第i+1行。
  2. 交换矩阵两个相邻的列,也就是说,列为索引i(1 ≤ i < 5)的第i列和第i+1列。

    你认为如果数字1位于矩阵的中心(第三行和第三列的交点处的单元格)那么矩阵就看起来很美观。计算一下使矩阵变得美观所需要的最少移动步数。

输入

    需要输入5行,每行包含5个整数:所输入的第i行的第j个整数表示位于矩阵第i行第j列的元素。确保矩阵是由24个0和1个1组成的。

输出

    输出一个整数 一 使矩阵美观所需要的最少移动步数。

分析

    只需找到1所在位置(坐标),减去中心点所在位置(坐标),获得行差和列差的绝对值,相加即是最少移动步数。

代码

#include<iostream>
#include<math.h>
using namespace std;
int main()
{
	int a[5][5],row,column;
	for(int i = 0;i<5;i++)
		for (int j = 0; j < 5; j++)
		{
			cin >> a[i][j];
			if (a[i][j] == 1)
			{
				row = i;
				column = j;
			}
		}
	cout << abs(row - 2) + abs(column - 2);
	return 0;
}
用C语言解决下列问题:Kirill wants to weave the very beautiful blanket consisting of n×m of the same size square patches of some colors. He matched some non-negative integer to each color. Thus, in our problem, the blanket can be considered a B matrix of size n×m consisting of non-negative integers. Kirill considers that the blanket is very beautiful, if for each submatrix A of size 4×4 of the matrix B is true: A11⊕A12⊕A21⊕A22=A33⊕A34⊕A43⊕A44, A13⊕A14⊕A23⊕A24=A31⊕A32⊕A41⊕A42, where ⊕ means bitwise exclusive OR Kirill asks you to help her weave a very beautiful blanket, and as colorful as possible! He gives you two integers n and m . Your task is to generate a matrix B of size n×m , which corresponds to a very beautiful blanket and in which the number of different numbers maximized. Input The first line of input data contains one integer number t (1≤t≤1000 ) — the number of test cases. The single line of each test case contains two integers n and m (4≤n,m≤200) — the size of matrix B . It is guaranteed that the sum of n⋅m does not exceed 2⋅105 . Output For each test case, in first line output one integer cnt (1≤cnt≤n⋅m) — the maximum number of different numbers in the matrix. Then output the matrix B (0≤Bij<263) of size n×m . If there are several correct matrices, it is allowed to output any one. It can be shown that if there exists a matrix with an optimal number of distinct numbers, then there exists among suitable matrices such a B that (0≤Bij<263) .
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值