PAT甲级 1030

Travel Plan

A traveler’s map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output
0 2 3 3 40


  1. 考点

    1. 求最短路径
  2. 题解

    1. 使用dfs找到最短路径
  3. 笔记

    1. 不知道为什么dfs在这里可以过?如果是完全图的话,dfs的时间复杂度是n!。
#include<iostream>
#include<stdio.h>
#include<vector>
#include<limits.h>
#include<algorithm>
using namespace std;

const int maxn=500+1;

struct node{
    int vertex;
    int dist;
    int cost;
    node(){};
    node(int vertex,int dist,int cost){
        this->vertex=vertex,this->dist=dist,this->cost=cost;
    }
};
vector<node >vp[maxn];
vector<int> rst,tempRst;
bool visit[maxn];
int minTotalDist=INT_MAX,minTotalCost=INT_MAX;

void input_data(int edge){
    int u,v,d,c;
    for(int i=0;i<edge;i++){
        scanf("%d %d %d %d",&u,&v,&d,&c);
        vp[u].push_back(node(v,d,c));
        vp[v].push_back(node(u,d,c));
    }
}
void dfs(int cur,int finalEnd,int dist,int cost){
    if(cur==finalEnd && dist<=minTotalDist){
        if(dist<minTotalDist || (dist==minTotalDist && cost<minTotalCost)){
            minTotalDist=dist;  
            minTotalCost=cost;
            rst.resize(tempRst.size());
            copy(tempRst.begin(),tempRst.end(),rst.begin());
        }
    }else{
        for(auto it=vp[cur].begin();it!=vp[cur].end();it++){
            if(!visit[it->vertex]){
                tempRst.push_back(it->vertex);
                visit[it->vertex]=true;
                dfs(it->vertex,finalEnd,dist+it->dist,cost+it->cost);
                tempRst.pop_back();
                visit[it->vertex]=false;
            }
        }
    }
}
void output_data(){
    for(auto it=rst.begin();it!=rst.end();it++){
        printf("%d ",*it);
    }
    printf("%d %d",minTotalDist,minTotalCost);
}

int main(){
    freopen("./in","r",stdin);
    int N,M,S,D;
    scanf("%d %d %d %d",&N,&M,&S,&D);
    input_data(M);
    tempRst.push_back(S);
    visit[S]=true;
    dfs(S,D,0,0);
    output_data();
    return 0;
}
### 关于 PAT 甲级 1024 题目 PAT (Programming Ability Test) 是一项编程能力测试,其中甲级考试面向有一定编程基础的学生。对于 PAT 甲级 1024 题目,虽然具体题目描述未直接给出,但从相似类型的题目分析来看,这类题目通常涉及较为复杂的算法设计。 #### 数据结构的选择与实现 针对此类问题,常用的数据结构包括但不限于二叉树节点定义: ```cpp struct Node { int val; Node* lchild, *rchild; }; ``` 此数据结构用于表示二叉树中的节点[^1]。通过这种方式构建的二叉树能够支持多种遍历操作,如前序、中序和后序遍历等。 #### 算法思路 当处理涉及到图论的问题时,深度优先搜索(DFS)是一种常见的解题策略。特别是当需要寻找最优路径或访问尽可能多的节点时,结合贪心算法可以在某些情况下提供有效的解决方案[^2]。 #### 输入输出格式说明 根据以往的经验,在解决 PAT 类型的问题时,输入部分往往遵循特定模式。例如,给定 N 行输入来描述每个节点的信息,每行按照如下格式:“Address Data Next”,这有助于理解如何解析输入并建立相应的数据模型[^4]。 #### 数学运算示例 有时也会遇到基本算术表达式的求值问题,比如分数之间的加减乘除运算。下面是一些简单的例子展示不同情况下的计算结果: - \( \frac{2}{3} + (-2) = -\frac{7}{3}\) -2) = -\frac{4}{3}\) - \( \frac{2}{3} ÷ (-2) = -\frac{1}{3}\) 这些运算是基于样例提供的信息得出的结果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值