package com.recursive;
public class test1 {
public static void main(String[] args) {
}
//fibonacci数列
public int fibonacci(int n){
if(n<3)
return 1;
else
return fibonacci(n-1)+fibonacci(n-2);
}
//1加到n累加
public int sum(int n){
if(1==n)
return 1;
else
return sum(n-1)+n;
}
//从1到n累积
public int accumulate(int n){
if(1==n)
return 1;
else
return accumulate(n-1)*n;
}
// 用递归算法求数组中的最大值
public int getmax(int[] a,int low,int height ){
int max;
if(low>height-2)
{
if(a[low]>a[height])
max=a[low];
else
max=a[height];
}
else{
int mid =(low+height)/2;
int max1=getmax(a,low,mid);
int max2=getmax(a, mid+1, height);
max=max1>max2?max1:max2;
}
return max;
}
// 用递归算法求解数字塔问题
public String getRow(int n){
String s = null;
for(int i=0;i<n;i++){
s+=n+" ";
}
return s;
}
public String numtower(int n){
if(1==n)
return getRow(n)+"\n";
else
return numtower(n-1)+getRow(n)+"\n";
}
}
进阶练习
整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。所谓整数划分,是指把一个正整数n写成如下形式:
n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。
如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
例如当n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};
注意4=1+3 和 4=3+1被认为是同一个划分。
该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;
1.递归法:
根据n和m的关系,考虑以下几种情况:
(1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};
(2) 当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,...,1};
(3) 当n=m时,根据划分中是否包含n,可以分为两种情况:
(a). 划分中包含n的情况,只有一个即{n};
(b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。
因此 f(n,n) =1 + f(n,n-1);
(4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);
(5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
(a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,因此这种情况下
为f(n-m,m)
(b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);
因此 f(n, m) = f(n-m, m)+f(n,m-1);
综上所述:
f(n, m)= 1; (n=1 or m=1)
f(n, n); (n<m)
1+ f(n, m-1); (n=m)
f(n-m,m)+f(n,m-1); (n>m)
import java.util.Scanner;
public class test2 {
//整数划分
public static int divide(int n,int m){
if(1==n || 1==m)
return 1;
else if(n==m)
return 1+divide(n, n-1);
else if(n<m)
return divide(n, n);
else
return divide(n-m, m)+divide(n, m-1);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println(divide(n,n));
}
}