原题传送门
此题不错,调了我3h,码力++
第一感觉肯定是树剖了,但是这里还需要关注教派不同的问题
想到对于每一个教派都开一棵线段树,维护区间最值与区间和
空间可能会存不下,所以需要动态开点
有许多细节问题
Code:
#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
struct Seg{
int l, r, val, sum;
}seg[maxn << 5];
int head[maxn], num, d[maxn], fa[maxn], size[maxn], son[maxn], id[maxn], cnt, rk[maxn], top[maxn];
int n, m, w[maxn], c[maxn], sz, rt[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void add_edge(int x, int y){ edge[++num].to = y; edge[num].next = head[x]; head[x] = num; }
void dfs(int u){
size[u] = 1, son[u] = -1;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u]){
fa[v] = u, d[v] = d[u] + 1;
dfs(v);
size[u] += size[v];
if (son[u] == -1 || son[u] != -1 && size[son[u]] < size[v]) son[u] = v;
}
}
}
void dfs(int u, int x){
id[u] = ++cnt, top[u] = x, rk[cnt] = u;
if (son[u] == -1) return;
dfs(son[u], x);
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u] && v != son[u]) dfs(v, v);
}
}
void pushup(int rt){
seg[rt].val = max(seg[seg[rt].l].val, seg[seg[rt].r].val);
seg[rt].sum = seg[seg[rt].l].sum + seg[seg[rt].r].sum;
}
void clear(int rt){ seg[rt].val = seg[rt].sum = 0; }
void update(int &rt, int l, int r, int x, int y){
if (!rt) rt = ++sz;
if (l == r){
seg[rt].val = seg[rt].sum = y;
return;
}
int mid = (l + r) >> 1;
if (mid >= x) update(seg[rt].l, l, mid, x, y); else update(seg[rt].r, mid + 1, r, x, y);
pushup(rt);
}
void del(int rt, int l, int r, int x){
if (!rt) return;
if (l == r){
clear(rt);
return;
}
int mid = (l + r) >> 1;
if (mid >= x) del(seg[rt].l, l, mid, x); else del(seg[rt].r, mid + 1, r, x);
pushup(rt);
}
int querys(int rt, int tl, int tr, int l, int r){
if (!rt) return 0;
if (tl > r || tr < l) return 0;
if (tl >= l && tr <= r) return seg[rt].sum;
int mid = (tl + tr) >> 1;
return querys(seg[rt].l, tl, mid, l, r) + querys(seg[rt].r, mid + 1, tr, l, r);
}
int querym(int rt, int tl, int tr, int l, int r){
if (!rt) return 0;
if (tl > r || tr < l) return 0;
if (tl >= l && tr <= r) return seg[rt].val;
int mid = (tl + tr) >> 1;
return max(querym(seg[rt].l, tl, mid, l, r), querym(seg[rt].r, mid + 1, tr, l, r));
}
int main(){
n = read(), m = read();
for (int i = 1; i <= n; ++i) w[i] = read(), c[i] = read();
for (int i = 1; i < n; ++i){
int x = read(), y = read();
add_edge(x, y); add_edge(y, x);
}
dfs(1); dfs(1, 1);
for (int i = 1; i <= n; ++i) update(rt[c[rk[i]]], 1, n, i, w[rk[i]]);
while (m--){
char ch = getchar();
for (; ch != 'C' && ch != 'Q'; ch = getchar());
ch = getchar();
int x = read(), y = read();
if (ch == 'C'){
del(rt[c[x]], 1, n, id[x]);
c[x] = y;
update(rt[c[x]], 1, n, id[x], w[x]);
} else
if (ch == 'W'){
del(rt[c[x]], 1, n, id[x]);
w[x] = y;
update(rt[c[x]], 1, n, id[x], w[x]);
} else
if (ch == 'S'){
int ans = 0, k = c[x];
while (top[x] != top[y]){
if (d[top[x]] < d[top[y]]) swap(x, y);
ans += querys(rt[k], 1, n, id[top[x]], id[x]);
x = fa[top[x]];
}
if (d[x] < d[y]) swap(x, y);
ans += querys(rt[k], 1, n, id[y], id[x]);
printf("%d\n", ans);
} else{
int ans = 0, k = c[x];
while (top[x] != top[y]){
if (d[top[x]] < d[top[y]]) swap(x, y);
ans = max(ans, querym(rt[k], 1, n, id[top[x]], id[x]));
x = fa[top[x]];
}
if (d[x] < d[y]) swap(x, y);
ans = max(ans, querym(rt[k], 1, n, id[y], id[x]));
printf("%d\n", ans);
}
}
return 0;
}