POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

本文详细解析了POJ 1986题“DistanceQueries”的解决方案,该题要求在有向无环图中找到两点间的最短路径。通过构造树状结构并运用LCA算法,快速响应距离查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任意门:http://poj.org/problem?id=1986

Distance Queries
Time Limit: 2000MS Memory Limit: 30000K
Total Submissions: 16648 Accepted: 5817
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare" 

* Line 2+M: A single integer, K. 1 <= K <= 10,000 

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms. 

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart. 

 

题意概括:

输入:

第一行输入结点数 N  和 边数 M。

接下来 M 行输入边的信息:起点 u 终点 v 距离 w 方向 s

输入查询数 K

接下来 K 行 输入查询值: 起点 u,终点 v;

 

解题思路:

一个有向无环图,当作一棵树来处理,根结点随意,假设为 1;

LCA 两点最短距离 老套路。

 

AC code:

 1 #include <cstdio>
 2 #include <iostream>
 3 #include <algorithm>
 4 #include <vector>
 5 #include <cstring>
 6 #define INF 0x3f3f3f3f
 7 #define LL long long
 8 using namespace std;
 9 const int MAXN = 5e5+5;
10 struct Edge{int v, w, nxt;}edge[MAXN<<1];
11 struct Query
12 {
13     int v, id;
14     Query(){};
15     Query(int _v, int _id):v(_v),id(_id){};
16 };
17 vector<Query> q[MAXN];
18 
19 int head[MAXN], cnt;
20 int dis[MAXN];
21 int fa[MAXN];
22 bool vis[MAXN];
23 int ans[MAXN];
24 int N, M, K;
25 
26 void init()
27 {
28     memset(vis, false, sizeof(vis));
29     memset(head, -1, sizeof(head));
30     memset(dis, 0, sizeof(dis));
31     memset(ans, 0, sizeof(ans));
32     for(int i = 0; i <= N; i++) q[i].clear();
33     cnt = 0;
34 }
35 
36 int getfa(int x){return fa[x]==x?x:fa[x]=getfa(fa[x]);}
37 
38 void AddEdge(int from, int to, int weight)
39 {
40     edge[cnt].v = to;
41     edge[cnt].w = weight;
42     edge[cnt].nxt = head[from];
43     head[from] = cnt++;
44 }
45 
46 void dfs(int s, int f)
47 {
48     int root = s;
49     for(int i = head[s]; i != -1; i = edge[i].nxt){
50         if(edge[i].v == f) continue;
51         dis[edge[i].v] = dis[root] + edge[i].w;
52         dfs(edge[i].v, s);
53     }
54 }
55 
56 void Tarjan(int s, int f)
57 {
58     int root = s;
59     fa[s] = s;
60     for(int i = head[s]; i != -1; i = edge[i].nxt){
61         int Eiv = edge[i].v;
62         if(Eiv == f) continue;
63         Tarjan(Eiv, root);
64         fa[getfa(Eiv)] = root;
65     }
66     vis[s] = true;
67     for(int i = 0; i < q[s].size(); i++){
68         if(vis[q[s][i].v] && ans[q[s][i].id] == 0){
69             ans[q[s][i].id] = dis[q[s][i].v] + dis[s] - 2*dis[getfa(q[s][i].v)];
70         }
71     }
72 }
73 
74 int main()
75 {
76     scanf("%d%d", &N, &M);
77     init();
78     char s;
79     for(int i = 1, u, v, w; i <= M; i++){
80         scanf("%d%d%d %c", &u, &v, &w, &s);
81         AddEdge(u, v, w);
82         AddEdge(v, u, w);
83     }
84     scanf("%d", &K);
85     for(int i = 1, u, v; i <= K; i++){
86         scanf("%d%d", &u, &v);
87         q[u].push_back(Query(v, i));
88         q[v].push_back(Query(u, i));
89     }
90     dfs(1, -1);
91     Tarjan(1, -1);
92     for(int i = 1; i <= K; i++){
93         printf("%d\n", ans[i]);
94     }
95     return 0;
96 }
View Code

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值