POJ 1632 Vase collection【状态压缩+搜索】

本文介绍了一道名为“Vasecollection”的编程竞赛题目,通过对题目的深入解析,提出了使用状态压缩和深度优先搜索的方法来解决该问题,并附上了AC代码。

题目传送门:http://poj.org/problem?id=1632

Vase collection

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 2308 Accepted: 901

Description

Mr Cheng is a collector of old Chinese porcelain, more specifically late 15th century Feng dynasty vases. The art of vase-making at this time followed very strict artistic rules. There was a limited number of accepted styles, each defined by its shape and decoration. More specifically, there were 36 vase shapes and 36 different patterns of decoration - in all 1296 different styles. 
For a collector, the obvious goal is to own a sample of each of the 1296 styles. Mr Cheng however,like so many other collectors, could never afford a complete collection, and instead concentrates on some shapes and some decorations. As symmetry between shape and decoration was one of the main aestheathical paradigms of the Feng dynasty, Mr Cheng wants to have a full collection of all combinations of k shapes and k decorations, for as large a k as possible. However, he has discovered that determining this k for a given collection is not always trivial. This means that his collection might actually be better than he thinks. Can you help him?

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer m <= 100, the number of vases in the collection. Then follow m lines, one per vase, each with a pair of numbers, si and di, separated by a single space, where si ( 0 < si <= 36 ) indicates the shape of Mr Cheng's i:th vase, and di ( 0 < di <= 36 ) indicates its decoration.

Output

For each test scenario, output one line containing the maximum k, such that there are k shapes and k decorations for which Mr Cheng's collection contains all k*k combined styles.

Sample Input

2
5
11 13
23 5
17 36
11 5
23 13
2
23 15
15 23

Sample Output

2
1

Source

 

题意概括:

N个瓶子,每个瓶子有两种属性 形状 和 颜色,我们要找到最大 K, 使得K*K个瓶子 都是由 K种 形状和颜色组成。

不是很好理解...

另一种理解可以把shape和decoration看成点,它们之际的对应关系看成边,这样就得到两个集合的映射。用A表示shape的集合,B表示decoration的集合。题目要求的就是原图的一个最大子图:使得该子图也可以分为A的子集A’和B的子集B’两部分,且从A’的每个点出发,到B’的任意点都存在边。

参考:https://blog.youkuaiyun.com/sj13051180/article/details/6612732

解题思路:

呃...我觉得这道题最大的难点在于理解题意了,看题目看到怀疑人生。

题意搞懂之后很容易想到状态压缩,之前搞状态压缩都在DP上搞,这次搬到搜索上有意思。

我们不妨设一个数组 Cp[ x ] = y; x(数组下标)表示shape, 数值 y 表示decoratio;y 最大可以到达 2^36, 所以数组定义个 long long 即可。 (有点像浓缩版的vector)

接下来就是暴力深搜去匹配了,两两匹配,如果匹配成功则两个合并后继续匹配(试试能否继续壮大),如果匹配失败则分道扬镳(各自寻找属于自己的那群小伙伴),不断匹配去寻找K的最大值。

 

AC code(116k 0ms):

 1 //DFS 状态压缩
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <iostream>
 6 #include <algorithm>
 7 #define ll long long int
 8 using namespace std;
 9 
10 const int MAXN = 50;
11 ll Cp[MAXN];
12 int N, ans;
13 
14 int cmp(ll num)
15 {
16     int cnt = 0;
17     while(num)
18     {
19         cnt+=(num&1);
20         num>>=1;
21     }
22     return cnt;
23 }
24 void dfs(int k, int st, ll tp)  ///花瓶数 当前花瓶编号 当前累积的颜色值
25 {
26     if(k > ans) ans = k;
27     for(int i = st; i <= 36; i++)
28     {
29         if(cmp(Cp[i]&tp) > k)
30             dfs(k+1, i+1, (Cp[i]&tp));
31     }
32 }
33 int main()
34 {
35     int T, u, v;
36     scanf("%d", &T);
37     while(T--)
38     {
39         memset(Cp, 0, sizeof(Cp));
40         ans = 0;
41         scanf("%d", &N);
42         for(int i = 0; i < N; i++)
43         {
44             scanf("%d%d", &u, &v);
45             Cp[u]|=(1ll<<v);
46         }
47         dfs(0, 1, (1ll>>36)-1);
48         printf("%d\n", ans);
49     }
50     return 0;
51 }
View Code

 

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值