BERT 模型详解:结构、原理解析

前言

在自然语言处理(NLP)领域,BERT(Bidirectional Encoder Representations from Transformers)已经成为理解类任务的标配模型。相比 GPT 更擅长文本生成,BERT 则在语言理解任务上展现出卓越的能力。本文将从结构到应用,全方位剖析 BERT 的核心思想与关键技术。


一、BERT 的技术背景

BERT 基于 Transformer 架构中的 Encoder 部分,其出现受到了 ELMo 和 GPT-1 的启发:

  • ELMo:采用双向 LSTM(能够双向上下文),能够捕捉上下文信息,但执行上较为缓慢。

  • GPT-1:基于 Transformer 的 Decoder 结构,仅使用单向上下文。

  • BERT:综合优势,采用 Transformer 的 Encoder,并实现了真正的双向建模,BERT 模型本质上就是一个强大的语义特征向量提取模型


二、模型结构概览

1. 输入结构

BERT 的输入包括三类嵌入信息:

  • Token Embedding:词语嵌入,将输入文本的词转化为向量,通常为 768 维。

  • Segment Embedding:区分句子 A/B 的标记。

  • Position Embedding:加入位置信息,使模型有“顺序感”,比如标号为0、1、2,有别于transfomer 的positional encoding 通常

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值