平衡二叉树:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1
时间复杂度O(N^2)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int TreeHeight(struct TreeNode* root)
{
if(root == NULL)
return 0;
int leftheight = TreeHeight(root->left);
int rightheight = TreeHeight(root->right);
return leftheight > rightheight ? leftheight+1 : rightheight+1;
}
bool isBalanced(struct TreeNode* root){
if(root == NULL)
return true;
int leftheight = TreeHeight(root->left);
int rightheight = TreeHeight(root->right);
return abs(leftheight-rightheight) < 2 &&
isBalanced(root->left) &&isBalanced(root->right);
}
优化:时间复杂度O(N)解法
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
typedef struct RET
{
bool isbalanced;
int height;
}Ret;
Ret _isBalanced(struct TreeNode* root)
{
Ret ret;
ret.height = 0;
ret.isbalanced = true;
if(root == NULL)
return ret;
Ret lret;
lret = _isBalanced(root->left);
if(lret.isbalanced == false)
{
return lret;
}
Ret rret;
rret = _isBalanced(root->right);
if(rret.isbalanced == false)
{
return rret;
}
ret.isbalanced = abs(lret.height - rret.height) < 2 ;
ret.height = lret.height > rret.height ? lret.height+1 : rret.height+1;
return ret;
}
bool isBalanced(struct TreeNode* root){
Ret ret = _isBalanced(root);
return ret.isbalanced;
}