先放三个实例
做区别
//erase正常
void test_vector1()
{
//正常运行的情况 -> 运气好
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
//要求删除所有的偶数
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
{
it = v.erase(it);
}
else
{
++it;
}
}
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
//erase不正常
void test_vector2()
{
//不正常运行的情况 -> 崩溃(结尾是偶数)
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
//v.push_back(5);
//要求删除所有的偶数
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
{
it = v.erase(it);
}
else
{
++it;
}
}
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
//erase不正常
void test_vector3()
{
//不正常运行的情况 -> 错位,结果不对(出现连续偶数)
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
v.push_back(3);
v.push_back(4);
v.push_back(5);
//要求删除所有的偶数
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
{
it = v.erase(it);
}
else
{
++it;
}
}
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
这与我们所做的模拟vector有关
#include <assert.h>
namespace myx_vector
{
template <class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
//可以用原生指针来做迭代器
//只要是连续的空间都可以用原生指针
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin() const
{
return _start;
}
const_iterator end() const
{
return _finish;
}
vector()
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{}
~vector()
{
delete[] _start;
_start = _finish = _end_of_storage = nullptr;
}
size_t capacity() const
{
return _end_of_storage
- _start;
}
size_t size() const
{
return _finish
- _start;
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos) const
{
assert(pos < size());
return _start[pos];
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t sz = size();
T* tmp = new T[n];
if (_start)
{
memcpy(tmp, _start, sizeof(T) * sz);
delete[] _start;
}
_start = tmp;
_finish = _start + sz;
_end_of_storage = _start + n;
}
}
//尾插
void push_back(const T& x)
{
if (_finish == _end_of_storage)
{
reserve(capacity() == 0 ? 4 : capacity() * 2);
}
*_finish = x;
++_finish;
//iterator end = _finish - 1;
//insert(end, x);
}
//尾删
void pop_back()
{
assert(_finish > _start);
--_finish;
}
//插入
void insert(iterator pos, const T& x)
{
//判断
assert(pos >= _start);
assert(pos <= _finish);
//扩容问题 -》小心扩容后原来空间释放已经被tmp顶替
// 这时pos失效,成为野指针
if (_finish == _end_of_storage)
{
//解决方法:记录距离
size_t len = pos - _start;
reserve(capacity() == 0 ? 4 : capacity() * 2);
pos = _start + len;
}
//挪动数据
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
}
// 删除
// stl 规定erase返回删除位置下一个位置迭代器
iterator erase(iterator pos)
{
//判断
assert(pos >= _start);
assert(pos < _finish);
iterator begin = pos + 1;
while (begin < _finish)
{
*(begin - 1) = *begin;
++begin;
}
--_finish;
////缩容问题
//if (size() < capacity() / 2)
//{
// //缩容意义 -> 以时间换空间
// //开辟一个新空间,再复制过去,销毁原来的
// //有缩容效率会低
// //迭代器也有可能会失效
// //所以一般不使用这种方案
//}
return pos;
}
private:
iterator _start;
iterator _finish; //最后一个数据的下一个位置
iterator _end_of_storage;//最大限量的下一个位置
};
void Func(const vector<int>& v)
{
vector<int>::const_iterator it = v.begin();//这里是const对象
while (it != v.end())
{
//*it = 10; //只能读不能写
cout << *it << " ";
++it;
}
cout << endl;
//范围for 傻瓜式的替换, -> const对象也可以直接调用const迭代器
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
}