24年收尾之作------动态规划<六> 子序列问题(含对应LeetcodeOJ题)

目录

引例

 经典LeetCode OJ题

1.第一题

 2.第二题

3.第三题 

 4.第四题

5.第五题

 6.第六题

 7.第七题

引例

OJ传送门 LeetCode<300>最长递增子序列

画图分析:

使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的子序列中,最长递增子序列的长度

2.状态表示  对于子数组/子序列的问题都可以划分为长度为1,长度大于1两种情况

3.初始化  可以将dp表中的值初始化为最差的情况,即单个值构成子序列,初始化为1

4.填表顺序    从左往右

5.返回值   因为子序列的结束位置是任意的,所以返回值是dp表中的最大值

具体代码:

int lengthOfLIS(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> dp(n,1);
        int ret=1;
        for(int i=1;i<n;++i)
        {
            for(int j=0;j<i;++j)
             if(nums[j]<nums[i]) dp[i]=max(dp[i],dp[j]+1);
            
            ret=max(ret,dp[i]);
        }
        return ret;
    }

 经典LeetCode OJ题

1.第一题

OJ传送门 LeetCode<376>摆动序列

 画图分析:

使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长摆动子序列的长度

但在分析时,会发现结尾位置会出现两种情况

因此对于摆动的子序列或子数组,在状态表示时,是需要使用两个状态来表示的 

f[i]表示以i位置元素为结尾的所有子序列中,最后一个位置呈现"上升"趋势的最长摆动序列的长度

f[i]表示以i位置元素为结尾的所有子序列中,最后一个位置呈现"下降"趋势的最长摆动序列的长度

2.状态转移方程----根据子序列构成来分析

3.初始化

可以将f,g表中的值先初始化为最差的情况,即1

4.填表顺序  从左往右两个表一起填

5.返回值  两个表中的最大值

具体代码:

int wiggleMaxLength(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> f(n,1),g(n,1);
        int ret=1;
        for(int i=1;i<n;++i)//填f[i],g[i]
        {
            for(int j=0;j<i;++j)
            {
                if(nums[j]<nums[i]) f[i]=max(g[j]+1,f[i]);
                else if(nums[j]>nums[i]) g[i]=max(f[j]+1,g[i]);
            }
            ret=max(ret,max(f[i],g[i]));
        }
        re
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值