哈理工 1632 最大最小公倍数

探讨了如何从不大于给定整数n的数中挑选三个数,使其最小公倍数最大。通过分析不同情况下的数之间的互质性来确定最佳组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

从小学我们就学过最小公倍数,今天这个问题也是关于最小公倍数lcm (lease common multiple)的。我们的问题是,给定一个整数n后,你需要任取三个不大于n的数,取法不限,每个数可取多个,使得取到的这三个数的最小公倍数在所有取法中是最大的。

举个例子:给定的n是5。那么不大于5的可选数为1、2、3、4、5。这里选出3、4、5三个数的最小公倍数是60,在所有取法中是最大的。因此我们得到结果60。

Input

输入包含多组测试数据,每组为一个整数n (1 <= n <= 10^6) 如上所述。

Output

对每组测试数据,输出一个整数,代表所有可能取法中,选出的不超过n的三个数的最小公倍数的最大值。允许选取相同的数多次。

Sample Input

5

7

Sample Output

60

210

Hint

输出结果可能会超出32位整数所能存放的范围,你可能需要64位整型变量存储答案。

      接下来先说一个结论:大于1的两个相邻的自然数必定互质。

       而对于1~N的范围,肯定是 n*(n-1)*(n-2)的乘积最大、如果这三个数还两两互质的话那就最棒了。

       如果n是奇数,那么 n、n-1、n-2必定两两互质,要是有些纠结的话,那么我们就分析在什么情况下可能会存在公因子。n是奇数,那么n,n-1,n-2一定是两奇加一偶的情况。公因子2直接pass,因为只有一个偶数。假设剩下的n,n-2中有一个数能被3整除,那么有公因子的数一定是n或n-2加减3才能得到的情况。为此,n,n-1,n-2的乘积不仅是最大的,而且一定两两互质。

       如果n是偶数,继续分析n*(n-1)*(n-2),这样的话n和n-2必定有公因子2,那么就换成式子n*(n-1)*(n-3)。然后仔细思考一下,不行啊,若偶数本身就能被3整除的话,那么式子n*(n-1)*(n-3)也不成立了,n和n-3就有公因子3,再仔细思考一下,式子就变成了(n-1)*(n-2)*(n-3),两奇夹一偶的情况。



#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;


int main(){  
    long long ans, n;  
    while(cin>>n)
    {
    if(n<=2)
          ans = n;  
        else if(n%2)
          ans = n*(n-1)*(n-2);
        else 
   {  
           if(n%3)
    ans = n*(n-1)*(n-3);
           else 
    ans = (n-3)*(n-1)*(n-2);  
        }  
        cout<<ans<<endl;  
    }
    return 0;  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值