/*****************************************************/
/* */
/* 求最大公约数Great Common Divisor的三种算法 */
/* 1、使用欧几里得算法 */
/* 2、使用连续整数检测算法 */
/* 3、使用中学时代的算法(使用埃拉托色尼筛) */
/* Author:lixiongwei */
/* Time:06/11/11 Sun. */
/* WIN XP+(TC/Win_TC/VC++6.0) */
/* */
/*****************************************************/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#define MAX 5000
/******************函数原型声明***********************/
unsigned int my_gcd1(unsigned int m,unsigned int n);
unsigned int my_gcd2(unsigned int m,unsigned int n);
unsigned int my_gcd3(unsigned int m,unsigned int n);
int my_sieve(unsigned int n,unsigned int *L);
int main()
{
unsigned int m,n;
printf("Please enter two number: ");
scanf("%u %u",&m,&n);
printf("/nGreat Common Divisor: my_gcd1(%u,%u) = %u/n/n",m,n,my_gcd1(m,n));
printf("Great Common Divisor: my_gcd2(%u,%u) = %u/n/n",m,n,my_gcd2(m,n));
printf("Great Common Divisor: my_gcd3(%u,%u) = %u/n/n",m,n,my_gcd3(m,n));
getch();
return 0;
}
/*******使用欧几里得算法 函数:my_gcd1()定义部分*******/
unsigned int my_gcd1(unsigned int m,unsigned int n)
{
unsigned int temp=m;
unsigned int r;
if(m < n) /* swap m,n*/
{
m = n;
n = temp;
}
if(0 == m)
{
printf("You must enter one number much than zero!");
getch();
exit(1);/*abnormity*/
}
while(n != 0)
{
r = m % n;
m = n;
n = r;
}
return m;
}
/*****使用连续整数检测算法 函数:my_gcd2()定义部分*****/
unsigned int my_gcd2(unsigned int m,unsigned int n)
{
unsigned int t;
if( (0 == m)&&(0 == n) )
{
printf("You must enter one number much than zero!");
getch();
exit(1);/*abnormity*/
}
if(0 == m)
return n;
if(0 == n)
return m;
t = (m < n) ? m : n;
while(1)
{
if( ((m % t) == 0)&&((n % t) == 0) )
break;
else
--t;
}
return t;
}
/****使用中学时代的算法(使用埃拉托色尼筛) 函数:my_gcd3()定义部分****/
unsigned int my_gcd3(unsigned int m,unsigned int n)
{
unsigned int ml[MAX];
unsigned int nl[MAX];
unsigned int mr[MAX];
unsigned int nr[MAX];
unsigned int t=1;
int i,jm,jn,mi,ni;
int zm=0,zn=0;
if( (0 == m)&&(0 == n) )
{
printf("You must enter one number much than zero!");
getch();
exit(1);/*abnormity*/
}
if(0 == m)
return n;
if(0 == n)
return m;
for(i=0; i<MAX; ++i)
{
ml[i]=0;
nl[i]=0;
mr[i]=0;
nr[i]=0;
}
mi=my_sieve(m,ml);
ni=my_sieve(n,nl);
i=0;jm=0;
while(i < mi)
{
while(1)
{
if( (m%ml[i])==0 )
{
mr[jm]=ml[i];
m=m/ml[i];
++jm;
}
else
break;
}/*inside while end*/
++i;
}/*out while end*/
i=0;jn=0;
while(i < ni)
{
while(1)
{
if( (n%nl[i])==0 )
{
nr[jn]=nl[i];
n=n/nl[i];
++jn;
}
else
break;
}/*inside while end*/
++i;
}/*out while end*/
for(zm=0,zn=0; (zm<jm)&&(zn<jn); )
{
if(mr[zm] < nr[zn])
++zm;
if(mr[zm] > nr[zn])
++zn;
if(mr[zm] == nr[zn])
{ t=t*mr[zm]; zm++;zn++;}
}
return t;
}
/*******************埃拉托色尼筛函数定义部分************************/
int my_sieve(unsigned int n,unsigned int *L)
{
int i;
unsigned int p,j,A[MAX];
for(p = 2; p <= n; ++p)
A[p]=p;
for(p = 2; p*p <= n; ++p)
{
if(A[p] != 0)
{
j = p*p;
while(j <= n)
{
A[j]=0;
j += p;
}
}/*end if*/
}/*end for*/
i = 0;
for(p=2; p<=n; ++p)
{
if(A[p] != 0)
{
L[i]=A[p];
++i;
}
}
return i;
}