The Response of LTI systems to complex Exponential Signals

本文探讨了线性时不变(LTI)系统对于复指数信号的响应特性,指出这些信号是LTI系统的特征函数,而系统的特征值则由输入信号的幅度决定。文中详细推导了连续时间和离散时间系统下特征值的计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. The eigenfuctions and eigenvalues of LTI systems

The importance of the responses of LTI systems to complex exponential signals lies in the fact that the responses are a constant times the corresponding input values. In other words ,the exponential signals are theeigenfunctions of the LTI system and their amplitudes are the system'seigenvalue.

 Specifically, 

 

where the complex amplitude factor H(s) and H(z) are determined by s and z respectively i.e. if s and z is given , we can calculate the values of H((s) and H(z) . 

2. The calculation of H(s) and H(z)

let's consider the impulse response of a LTI system is h(t) and the input is x(t)= exp(st) . From our early discussion in the convolution integral representation of LTI systems and using the commutative law of convolution operation , we have 



and 


Hence , we can conclude that 


     

Later we will know that H(s) and H(z) are actually the Fourier  Transforms  of unit impulse responses in continuous time and discrete time respectively . 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值