Discrete-time LTI system : the convolution sum representation

本文详细介绍了离散时间线性时不变(LTI)系统的特性及其应用,包括线性和时不变性的定义,卷积运算的基本原理,以及如何利用单位脉冲响应表示任意离散时间信号的响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. LTI system 

LTI system is the abbreviation of linear ,time-invariant system . Linearity and time invariance are the two distinguishing features of this kind of system . 

 

An example of a LTI system :


if 

the response of x1(1) is y1(t) 

the response of x2(1) is y2(t)

then 

the response of ax(t-t0) + bx2(t-t0) is ay1(t) + by2(t)  , where ' a ' and  ' b ' are any complex constants 


2. Convolution 

Convolution is a mathematical  operation .  The convolutions of two functions in continuous time and discrete time are given by equation (1) and (2)


3. The Representation of Discrete-Time Signals in Terms of Unit Impulse 

Any discrete signals can be represented as the  sum of  scaled and time-shifted unit impulses  . This is apparent when we think of a discrete-time signal as the combination of a sequence of individual impulses (figure 1 ). The mathematical representation is given by equation (3) .



4.The Representation of the Discrete-Time Signal Responses in Terms of Unit Impulse Response

Due to the linearity and time-invariance properties of LTI system , we can construct any signal responses by using the response of the unit impulse. 


if the response of unit impulse δ[n] is h [n ] and x[n] is defined by eq.(4) 


then the response of x[n] (i.e. y[n]) can be constructed as eq.(5) 


More simple form is 


5. Two important convolution sum representations 

From the dissusions above , we finally got two useful representions of the discrete-time LTI system .


### 离散时间压控振荡器(VCO)的工作原理与实现方法 离散时间压控振荡器 (Discrete-Time Voltage-Controlled Oscillator, DT-VCO) 是一种用于数字信号处理中的重要组件,其功能是在输入控制电压的作用下生成具有特定频率特性的周期性波形。DT-VCO 的设计通常基于模拟电路理论并结合数字化技术来实现。 #### 工作原理 在数字信号处理领域,DT-VCO 可通过数值积分法或查找表方式实现。具体而言,它利用相位累加机制生成正弦或其他形式的周期信号。这种过程可以通过以下公式描述: \[ \phi[n+1] = \phi[n] + K_v \cdot T_s, \] 其中 \(K_v\) 表示增益系数,\(T_s\) 为采样间隔,而 \(\phi[n]\) 则代表当前时刻的累积相位[^2]。当累积相位达到一定范围时,会对其进行模运算以保持连续性和周期性特性。 对于实际应用来说,可以采用CORDIC算法或者直接查表的方法将上述计算得到的相位转换成所需的输出波形样本值。这种方法不仅简化了硬件结构而且提高了效率[^3]。 #### 实现方法 以下是两种常见的离散时间 VCO 数字化实现方案之一——基于 DDS 技术的方式: ```python import numpy as np class DiscreteTimeVCO: def __init__(self, kv=0.1, ts=1e-3): self.kv = kv # 增益因子 Kv self.ts = ts # 时间步长 Ts self.phase_acc = 0 # 初始化相位积累量 def generate_signal(self, control_voltage, num_samples): signals = [] for _ in range(num_samples): delta_phase = self.kv * control_voltage * self.ts self.phase_acc += delta_phase while self.phase_acc >= 2*np.pi: self.phase_acc -= 2*np.pi output_sample = np.sin(self.phase_acc) signals.append(output_sample) return np.array(signals) ``` 此 Python 类定义了一个简单的离散时间 VCO 模型,展示了如何依据给定参数生成一系列近似于理想正弦波的数据点集合[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值