一、简介

1 高斯羽烟模型方程【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学
式中c为污染物浓度(单位:kg/m3)
Q为源强(单位:kg/s)
u为泄漏高度的平均风速(单位:m/s)
y、z分别用浓度标准偏差表示的y轴及z轴上的扩散参数
H为泄漏有效高度(单位:m)

2 扩散系数系数【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_02

二、源代码

function varargout = mGA_new(varargin)
% MGA_NEW MATLAB code for mGA_new.fig
%      MGA_NEW, by itself, creates a new MGA_NEW or raises the existing
%      singleton*.
%
%      H = MGA_NEW returns the handle to a new MGA_NEW or the handle to
%      the existing singleton*.
%
%      MGA_NEW('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in MGA_NEW.M with the given input arguments.
%
%      MGA_NEW('Property','Value',...) creates a new MGA_NEW or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before mGA_new_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to mGA_new_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help mGA_new

% Last Modified by GUIDE v2.5 04-Jul-2020 16:21:23

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @mGA_new_OpeningFcn, ...
                   'gui_OutputFcn',  @mGA_new_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before mGA_new is made visible.
function mGA_new_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to mGA_new (see VARARGIN)

% Choose default command line output for mGA_new
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes mGA_new wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = mGA_new_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu1


% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function feng_Callback(hObject, eventdata, handles)
% hObject    handle to feng (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of feng as text
%        str2double(get(hObject,'String')) returns contents of feng as a double


% --- Executes during object creation, after setting all properties.
function feng_CreateFcn(hObject, eventdata, handles)
% hObject    handle to feng (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function gaodu_Callback(hObject, eventdata, handles)
% hObject    handle to gaodu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of gaodu as text
%        str2double(get(hObject,'String')) returns contents of gaodu as a double


% --- Executes during object creation, after setting all properties.
function gaodu_CreateFcn(hObject, eventdata, handles)
% hObject    handle to gaodu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end


% --- Executes on button press in jiancedian.
function jiancedian_Callback(hObject, eventdata, handles)
% hObject    handle to jiancedian (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
[filename,pathname]=uigetfile({'*xls;*.xlsx'},'读入测量数据文件');%加载路径的选择
fpath=[pathname,filename];%总的路径
data=xlsread(fpath);%读测量文件
set(handles.guance,'data',data);%写入到表中
setappdata(handles.jiancedian,'data',data);





% --- Executes on button press in fansuan.
function fansuan_Callback(hObject, eventdata, handles)
% hObject    handle to fansuan (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 %% 获取参数
% diedai=str2double(get(handles.deidai,'String'));% 进化次数
val=get(handles.popupmenu1,'value'); %这是获取当前选项的位置,从上到下是1,2,3...
str=get(handles.popupmenu1,'string');
W=str{val}; %这个将返回当前选项的内容,若是纯数字用str2num(str(val))
popsize=100; %种群规模  
lenchrom=3;%变量字串长度
maxgen=str2double(get(handles.diedai,'String'));% 进化次数
% maxgen=1000;% 进化次数
popmax=500;% 种群最大值
popmin=-500;% 种群最小值
u1=str2double(get(handles.feng,'String'));
hr=str2double(get(handles.gaodu,'String'));
% % z1=str2double(get(handles.edit3,'String'));
% z1=0;
% Q=str2double(get(handles.edit8,'String'));
dt=getappdata(handles.jiancedian,'data');
d=dt(:,:);
% mGA.data(:,1)=dt(:,2);
% mGA.data(:,2)=dt(:,3);
% % z1=dt(:,3);
% % set(handles.uitable2,'data',data);
%% 开始
bound=[0 20000;popmin popmax;popmin popmax];  %变量范围
for i=1:popsize
    %随机产生一个种群
    GApop(i,:)=Code(lenchrom,bound);       %随机产生个体
%     GApop(i,:)=mGA.data(i,:);  
    %计算适应度
    fitvalue(i)=fitness(GApop(i,:),u1,hr,d,W);            %染色体的适应度
end
% set(handles.uitable2,'data',fitvalue);
%% 找最好的染色体
[bestfitness,bestindex]=min(fitvalue);
xm=GApop(bestindex,:);   %全局最佳
gbest=GApop;                %体最佳
fitnessgbest=fitvalue;       %个体最佳适应度值
xv=bestfitness;   %全局最佳适应度值
% % set(handles.uitable2,'data',xv);
%% 迭代寻优
for i=1:maxgen
        %种群更新 GA选择更新
        GApop=Select(GApop,fitvalue,popsize); % 其中Select为选择算子函数

        % 交叉操作 GA
        pc=i/maxgen; % maxgen  进化次数  
        GApop=Cross(pc,lenchrom,GApop,popsize,bound); % 其中Cross为交叉算子函数

        % 变异操作 GA变异
        pm=i/maxgen;
        GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],bound);

        pop=GApop;
        
      for j=1:popsize
        %适应度值即变量约束条件
        if 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)<=20000 && 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)>=0
            if 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)<=500 && 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)>=-500
               if 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)<=500 && 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)>=-500
                    fitvalue(j)=fitness(pop(j,:),u1,hr,d,W);
               end
            end 
        end             
        %个体最优更新
        if fitvalue(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitvalue(j);
        end
        
        %群体最优更新
        if fitvalue(j) < xv
            xm = pop(j,:);
            xv = fitvalue(j);
        end
      end
       QQ(i)=xm(:,1);
       x(i)=xm(:,2);
       y(i)=xm(:,3);
       v(i)=xv;
end
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 244.

三、运行结果

【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_03

【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_04

【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_05【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_06

【运动学】基于改进的遗传算法和高斯烟羽模型模拟气体扩散_运动学_07