%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Multi-Objective Golden Eagle Optimizer (MOGEO) source codes version 1.0
%
% Original paper: Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri,
% Adel Azar, Mohammadreza Taghizadeh-Yazdi,
% Golden Eagle Optimizer: A nature-inspired
% metaheuristic algorithm, Computers & Industrial Engineering.
% To use this code in your own project
% remove the line for 'GetFunctionDetails' function
% and define the following parameters:
% fun : function handle to the .m file containing the objective function
% the .m file you define should accept 'x' as input and return
% a column vector containing objective function values
% nobj : number of objectives
% nvars : number of decision/design variables
% lb : lower bound of decision variables (must be of size 1 x nvars)
% ub : upper bound of decision variables (must be of size 1 x nvars)
%
% MOGEO will return the following:
% x : best solution found
% fval : objective function value of the found solution
%% Inputs
FunctionNumber = 7; % 1-10
options.PopulationSize = 200;
options.ArchiveSize = 100;
options.MaxIterations = 1000;
options.FunctionNumber = FunctionNumber;
%% Run Multi-Objective Golden Eagle Optimizer
[fun,nobj,nvars,lb,ub] = GetFunctionDetails (FunctionNumber);
options.AttackPropensity = [0.5 , 2];
options.CruisePropensity = [1 , 0.5];
[x,fval] = MOGEO (fun,nobj,nvars,lb,ub, options);
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.