1974年Hoppensteadt首先在文[1]中建立和研究了具有年龄结构的传染病模型.至今,具有年龄结构的 传染病模型的研究已有许多成果(见[2]-[5]等),但这些模型大多不考虑染病年龄、潜伏期等对疾病传播 的影响.这就不能准确的描述某些具有较长潜伏期和病程的传染病(麻疹、肺结核等)的传播,因此建立 和研究具有生理年龄、潜伏期和染病年龄的传染病模型具有重要意义.目前,同时具有生理年龄、染病 年龄、潜伏期的传染病模型研究结果较少,只有一些特殊问题的结果,如文[6]-[7]研究了具有生理年龄和 染病年龄的传染病模型,文[8]-[9]建立和研究了同时具有潜伏期、染病年龄和生理年龄的无免疫型SEIS传 染病模型及其解的适定性.本文针对麻疹、肺结核等疾病,将人群分为S(易感类)、E(潜伏类)、I(染病 类)、R(治愈类)四类人群,利用K-M仓室模型原理(见文[10]),易建立同时具有生理年龄、染病年龄、潜 伏期的SEIR模型 。
这里总结了五个模型,分别是SI模型,SIS模型,SIR模型,SIRS模型,SEIR模型。
这几种模型的特点先介绍一下。
首先定义SEIR:
S为易感者 (Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;
E为暴露者 (Exposed),指接触过感染者,但暂无能力传染给其他人的人,对潜伏期长的传染病适用;
I为感病者 (Infective),指染上传染病的人,可以传播给 S 类成员,将其变为 E 类或 I 类成员;
R为康复者 (Recovered),指被隔离或因病愈而具有免疫力的人。如免疫期有限,R 类成员可以重新变为 S 类。
一、SI模型
该模型只考虑易感者和感病者,感病者不断去感染易感者。
随着时间推移,该模型感染者越来越多直到所有人都感染。
其微分方程为:
其中beta为感染率。
二、SIS模型
该模型依然只考虑易感者和感病者,感病者不断去感染易感者,这里感病者会得到治疗恢复成易感者,不过恢复后依然可能得病。
随着时间推移,该模型感染者和易感者会达到动态平衡。
其微分方程为:
其中beta为感染率,gamma为治愈率。
三、SIR模型
该模型考虑易感者、感病者与康复者,其中感病者不断感染易感者,而感病者又不断接受治疗成为康复者,康复者因为得到抗体不会再成为易感者。
随着时间推移,该模型康复者越来越多,最终所有人都成为康复者。
其微分方程为:
其中beta为感染率,gamma为治愈率。
四、SIRS模型
该模型考虑易感者、感病者与康复者,其中感病者不断感染易感者,而感病者不断接受治疗成为康复者,康复者获得抗体能够抵抗一段时间,不过最终还是会成为易感者。
该模型和SIS模型很像,区别就是康复者能够抵抗一段时间,也就是有一定的复感率,而SIS模型的复感率为1。
随着时间推移,该模型同样会达到一个动态平衡。
其微分方程为:
其中beta为感染率,gamma为治愈率,alpha为复感率。
五、SEIR模型
该模型四种参与者全部考虑,其中感病者不断感染易感者,易感者得到病毒会成为潜伏者,潜伏者依然能够使易感者感染,潜伏者有一定概率自己痊愈,感染者接受治疗也能够痊愈,痊愈后不再能够感染该病。
随着时间推移,该模型最终也是所有人都会成为康复者。
其微分方程为:
其中beta为感染率,gamma1为潜伏期康复率,gamma2为患者康复率,alpha为潜伏期转阳率。
function Message_Spread_Mode
tic
load 'Data\Link.txt'; %读入连接矩阵
% load '\Data\Point_X.txt'; %读入横坐标
% load '\Data\Point_Y.txt'; %读入纵坐标
%-------------------------------------------------------------------------%
%状态分布及状态转移概率SEIR
%0:易感状态S(Susceptible) P_0_1; (P_0_3:预免疫系数)
%1:潜伏状态E(Exposed) P_1_0;P_1_2;P_1_3
%2:染病状态I(Infected) P_2_0;P_2_3
%3:免疫状态R(Recovered) P_3_0
%-------------------------------------------------------------------------%
%计算各用户节点的度
De=sum(Link); %用户节点的度
%------------——————----参数设置与说明--------------------------------%
[M N]=size(Link); %连接矩阵的规模
I_E=0.6; %潜伏期E用户的传染强度
I_I=0.9; %发病期I用户的传染强度
lamda=sum(De)/M; %用户单位时间内平均发送信息的数量
%P_m1:用户预免疫系数
%State:用户所处状态State=zeros(1,M);0:表示易感状态(Susceptible)
%---------------------------------1---------------------------------------%
%先讨论用户预免疫系数P_m1对病毒传播的影响
TimeStep=50;%input('短信网络内病毒传播模拟时间:');
P_m1=[0.1,0.5,0.9]; %用户预免疫系数
% State=zeros(TimeStep,M); %用户的状态
G_t=5; %G_t:用户的免疫持续时间,反映了病毒的变异频率
F_t=5; %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(P_m1)
TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
Sta=zeros(1,M); %用户的状态
%进行预免疫设定
for j=1:M
if rand(1)<=P_m1(i)
Sta(j)=3; %进入免疫状态
TimeLong_E(j)=1; %出入潜伏期的时间为1
else
continue;
end
end
%状态转换
%初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
%问题:节点度大小存在差别,可能模拟出来的结果有出于
% 为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
[Number,Sta]=Select_Infected_Point(M,Sta,De);
%Number:病源节点
%State :确定病源节点以后的节点状态矩阵
State=zeros(TimeStep,M);
Number_State=zeros(4,TimeStep); %用户处于个状态的统计数量
for t=1:TimeStep
if t==1
State(t,:)=Sta;
else
%模拟每个用户节点的状态
for j=1:M
%判断用户节点处于什么状态,然后根据其状态确定其转变情况
if State(t-1,j)==0 %此时处于易感状态0,可能向潜伏期转移
Num=Select_Number_Near(j,Link); %找出节点j的邻居节点
P=zeros(1,length(Num)); %邻居节点感染该节点的概率
for k=1:length(Num)
if State(t-1,Num(k))==1 %节点处于潜伏期E(1)
P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
(factorial([1:De(Num(k))]-1)));
else
if State(t-1,Num(k))==2 %节点处于染病期I(2)
P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./(factorial([1:De(Num(k))]-1)));
else
continue;
end
end
end
P_0_1=max(P); %节点感染病毒的概率
if rand<=P_0_1 %此时节点进入潜伏期
State(t,j)=1;
else
State(t,j)=State(t-1,j);
end
else
if State(t-1,j)==1 %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
if rand<=1/(1+exp(-De(j))) %向染病状态I转移
State(t,j)=2;
TimeLong_F(j)=TimeLong_F(j)+1; %用户j处于染病状态的时间长短
else
if rand<=1/(1+exp(-De(j))) %向易感状态S转移
State(t,j)=0;
else
if rand<=1/(1+exp(-De(j))) %向免疫状态R转移
State(t,j)=3;
TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
else
State(t,j)=State(t-1,j); %状态不变,依然为潜伏期E(1)
end
end
end
else
if State(t-1,j)==2 %此时处于欺染病状态I,可能向易感S,免疫R转移
if TimeLong_F(j)<=F_t %表示此时用户不对病毒进行任何处理
State(t,j)=State(t-1,j); %此时用户维持在原状态I
TimeLong_F(j)=TimeLong_F(j)+2;
else
%此时用户对进行杀毒并升级病毒库,进入免疫状态R
State(t,j)=3;
TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
TimeLong_E(j)=1; %进入免疫期的时间长度
end
else
%此时用户处于免疫期
if TimeLong_E<=G_t %病毒此时并未突变,维持原状态R(免疫状态)
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
else
if rand<=1/G_t %病毒突变,状态转移为易感状态S
State(t,j)=0;
TimeLong_E(j)=0;
else
%此时用户状态依然不变
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
end
end
end
end
end
end
end
%统计各状态的节点数量
Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
figure(i)
if rem(t,3)==0
plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
else
continue;
end
legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
xlabel('模拟时间')
ylabel('各状态的用户数量')
end
end
P_m1=0.3; %用户预免疫系数
% State=zeros(TimeStep,M); %用户的状态
% G_t=5; %G_t:用户的免疫持续时间,反映了病毒的变异频率
G_t=[1,5,9];
F_t=5; %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(G_t)
TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
Sta=zeros(1,M); %用户的状态
%进行预免疫设定
for j=1:M
if rand(1)<=P_m1
Sta(j)=3; %进入免疫状态
TimeLong_E(j)=1; %出入潜伏期的时间为1
else
continue;
end
end
%状态转换
%初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
%问题:节点度大小存在差别,可能模拟出来的结果有出于
% 为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
[Number,Sta]=Select_Infected_Point(M,Sta,De);
%Number:病源节点
%State :确定病源节点以后的节点状态矩阵
State=zeros(TimeStep,M);
Number_State=zeros(4,TimeStep); %用户处于个状态的统计数量
for t=1:TimeStep
if t==1
State(t,:)=Sta;
else
%模拟每个用户节点的状态
for j=1:M
%判断用户节点处于什么状态,然后根据其状态确定其转变情况
if State(t-1,j)==0 %此时处于易感状态0,可能向潜伏期转移
Num=Select_Number_Near(j,Link); %找出节点j的邻居节点
P=zeros(1,length(Num)); %邻居节点感染该节点的概率
for k=1:length(Num)
if State(t-1,Num(k))==1 %节点处于潜伏期E(1)
P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
(factorial([1:De(Num(k))]-1)));
else
if State(t-1,Num(k))==2 %节点处于染病期I(2)
P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
(factorial([1:De(Num(k))]-1)));
else
continue;
end
end
end
P_0_1=max(P); %节点感染病毒的概率
if rand<=P_0_1 %此时节点进入潜伏期
State(t,j)=1;
else
State(t,j)=State(t-1,j);
end
else
if State(t-1,j)==1 %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
if rand<=1/(1+exp(-De(j))) %向染病状态I转移
State(t,j)=2;
TimeLong_F(j)=TimeLong_F(j)+1; %用户j处于染病状态的时间长短
else
if rand<=1/(1+exp(-De(j))) %向易感状态S转移
State(t,j)=0;
else
if rand<=1/(1+exp(-De(j))) %向免疫状态R转移
State(t,j)=3;
TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
else
State(t,j)=State(t-1,j); %状态不变,依然为潜伏期E(1)
end
end
end
else
if State(t-1,j)==2 %此时处于欺染病状态I,可能向易感S,免疫R转移
if TimeLong_F(j)<=F_t %表示此时用户不对病毒进行任何处理
State(t,j)=State(t-1,j); %此时用户维持在原状态I
TimeLong_F(j)=TimeLong_F(j)+2;
else
%此时用户对进行杀毒并升级病毒库,进入免疫状态R
State(t,j)=3;
TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
TimeLong_E(j)=1; %进入免疫期的时间长度
end
else
%此时用户处于免疫期
if TimeLong_E<=G_t(i) %病毒此时并未突变,维持原状态R(免疫状态)
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
else
if rand<=1/G_t(i) %病毒突变,状态转移为易感状态S
State(t,j)=0;
TimeLong_E(j)=0;
else
%此时用户状态依然不变
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
end
end
end
end
end
end
end
%统计各状态的节点数量
Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
figure(i+5)
if rem(t,3)==0
plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
else
continue;
end
legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
xlabel('模拟时间')
ylabel('各状态的用户数量')
end
end
P_m1=0.3; %用户预免疫系数
% State=zeros(TimeStep,M); %用户的状态
% G_t=5; %G_t:用户的免疫持续时间,反映了病毒的变异频率
G_t=5;
F_t=[1,5,9]; %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(F_t)
TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
Sta=zeros(1,M); %用户的状态
%进行预免疫设定
for j=1:M
if rand(1)<=P_m1
Sta(j)=3; %进入免疫状态
TimeLong_E(j)=1; %出入潜伏期的时间为1
else
continue;
end
end
%状态转换
%初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
%问题:节点度大小存在差别,可能模拟出来的结果有出于
% 为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
[Number,Sta]=Select_Infected_Point(M,Sta,De);
%Number:病源节点
%State :确定病源节点以后的节点状态矩阵
State=zeros(TimeStep,M);
Number_State=zeros(4,TimeStep); %用户处于个状态的统计数量
for t=1:TimeStep
if t==1
State(t,:)=Sta;
else
%模拟每个用户节点的状态
for j=1:M
%判断用户节点处于什么状态,然后根据其状态确定其转变情况
if State(t-1,j)==0 %此时处于易感状态0,可能向潜伏期转移
Num=Select_Number_Near(j,Link); %找出节点j的邻居节点
P=zeros(1,length(Num)); %邻居节点感染该节点的概率
for k=1:length(Num)
if State(t-1,Num(k))==1 %节点处于潜伏期E(1)
P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
(factorial([1:De(Num(k))]-1)));
else
if State(t-1,Num(k))==2 %节点处于染病期I(2)
P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
(factorial([1:De(Num(k))]-1)));
else
continue;
end
end
end
P_0_1=max(P); %节点感染病毒的概率
if rand<=P_0_1 %此时节点进入潜伏期
State(t,j)=1;
else
State(t,j)=State(t-1,j);
end
else
if State(t-1,j)==1 %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
if rand<=1/(1+exp(-De(j))) %向染病状态I转移
State(t,j)=2;
TimeLong_F(j)=TimeLong_F(j)+1; %用户j处于染病状态的时间长短
else
if rand<=1/(1+exp(-De(j))) %向易感状态S转移
State(t,j)=0;
else
if rand<=1/(1+exp(-De(j))) %向免疫状态R转移
State(t,j)=3;
TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
else
State(t,j)=State(t-1,j); %状态不变,依然为潜伏期E(1)
end
end
end
else
if State(t-1,j)==2 %此时处于欺染病状态I,可能向易感S,免疫R转移
if TimeLong_F(j)<=F_t(i) %表示此时用户不对病毒进行任何处理
State(t,j)=State(t-1,j); %此时用户维持在原状态I
TimeLong_F(j)=TimeLong_F(j)+2;
else
%此时用户对进行杀毒并升级病毒库,进入免疫状态R
State(t,j)=3;
TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
TimeLong_E(j)=1; %进入免疫期的时间长度
end
else
%此时用户处于免疫期
if TimeLong_E<=G_t %病毒此时并未突变,维持原状态R(免疫状态)
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
else
if rand<=1/G_t %病毒突变,状态转移为易感状态S
State(t,j)=0;
TimeLong_E(j)=0;
else
%此时用户状态依然不变
State(t,j)=State(t-1,j);
TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
end
end
end
end
end
end
end
%统计各状态的节点数量
Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
figure(i+10)
if rem(t,3)==0
plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
else
continue;
end
legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
xlabel('模拟时间')
ylabel('各状态的人口数量')
end
end
toc
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
- 183.
- 184.
- 185.
- 186.
- 187.
- 188.
- 189.
- 190.
- 191.
- 192.
- 193.
- 194.
- 195.
- 196.
- 197.
- 198.
- 199.
- 200.
- 201.
- 202.
- 203.
- 204.
- 205.
- 206.
- 207.
- 208.
- 209.
- 210.
- 211.
- 212.
- 213.
- 214.
- 215.
- 216.
- 217.
- 218.
- 219.
- 220.
- 221.
- 222.
- 223.
- 224.
- 225.
- 226.
- 227.
- 228.
- 229.
- 230.
- 231.
- 232.
- 233.
- 234.
- 235.
- 236.
- 237.
- 238.
- 239.
- 240.
- 241.
- 242.
- 243.
- 244.
- 245.
- 246.
- 247.
- 248.
- 249.
- 250.
- 251.
- 252.
- 253.
- 254.
- 255.
- 256.
- 257.
- 258.
- 259.
- 260.
- 261.
- 262.
- 263.
- 264.
- 265.
- 266.
- 267.
- 268.
- 269.
- 270.
- 271.
- 272.
- 273.
- 274.
- 275.
- 276.
- 277.
- 278.
- 279.
- 280.
- 281.
- 282.
- 283.
- 284.
- 285.
- 286.
- 287.
- 288.
- 289.
- 290.
- 291.
- 292.
- 293.
- 294.
- 295.
- 296.
- 297.
- 298.
- 299.
- 300.
- 301.
- 302.
- 303.
- 304.
- 305.
- 306.
- 307.
- 308.
- 309.
- 310.
- 311.
- 312.
- 313.
- 314.
- 315.
- 316.
- 317.
- 318.
- 319.
- 320.
- 321.
- 322.
- 323.
- 324.
- 325.
- 326.
- 327.
- 328.
- 329.
- 330.
- 331.
- 332.
- 333.
- 334.
- 335.
- 336.
- 337.
- 338.
- 339.
- 340.
- 341.
- 342.
- 343.
- 344.
- 345.
- 346.
- 347.
- 348.
- 349.
- 350.
- 351.
- 352.
- 353.
- 354.
- 355.
- 356.
- 357.
- 358.
- 359.
- 360.
- 361.
- 362.
- 363.
- 364.
- 365.
- 366.
- 367.
- 368.
- 369.
- 370.
- 371.
- 372.
- 373.
- 374.
- 375.
- 376.
- 377.
- 378.
- 379.
- 380.
- 381.
- 382.
- 383.
- 384.
- 385.
- 386.
- 387.
- 388.
- 389.
- 390.
- 391.
- 392.