一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间
2 算法部分
二、狮群算法
三、代码
%_________________________________________________________________________%
%狮群算法 %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=LSO(pop,Max_iter,lb,ub,dim,fobj)
beta = 0.5;%成年狮所占比列
Nc = round(pop*beta);%成年狮数量
Np = pop-Nc;%幼师数量
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
fitness(i) = fobj(X(i,:));
end
[value, index]= min(fitness);%找最小值
GBestF = value;%全局最优适应度值
GBestX = X(index,:);%全局最优位置
curve=zeros(1,Max_iter);
XhisBest = X;
fithisBest = fitness;
indexBest = index;
gbest = GBestX;
for t = 1: Max_iter
%母狮移动范围扰动因子计算
stepf = 0.1*(mean(ub) - mean(lb));
alphaf = stepf*exp(-30*t/Max_iter)^10;
%幼狮移动范围扰动因子计算
alpha = (Max_iter - t)/Max_iter;
%母狮位置更新
for i = 1:Nc
index = i;
while(index == i)
index = randi(Nc);%随机挑选一只母狮
end
X(i,:) = (X(i,:) + X(index,:)).*(1 + alphaf.*randn())./2;
end
%幼师位置更新
for i = Nc+1:pop
q=rand;
if q<=1/3
X(i,:) = (gbest + XhisBest(i,:)).*( 1 + alpha.*randn())/2;
elseif q>1/3&&q<2/3
indexT = i;
while indexT == i
indexT = randi(Nc) + pop - Nc;%随机位置
end
X(i,:) = (X(indexT,:) + XhisBest(i,:)).*( 1 + alpha.*randn())/2;
else
gbestT = ub + lb - gbest;
X(i,:) = (gbestT + XhisBest(i,:)).*( 1 + alpha.*randn())/2;
end
end
%边界控制
for j = 1:pop
for a = 1: dim
if(X(j,a)>ub)
X(j,a) =ub(a);
end
if(X(j,a)<lb)
X(j,a) =lb(a);
end
end
end
%计算适应度值
for j=1:pop
fitness(j) = fobj(X(j,:));
end
for j = 1:pop
if(fitness(j)<fithisBest(j))
XhisBest(j,:) = X(j,:);
fithisBest(j) = fitness(j);
end
if(fitness(j) < GBestF)
GBestF = fitness(j);
GBestX = X(j,:);
indexBest = j;
end
end
%% 狮王更新
Temp = gbest.*(1 + randn().*abs(XhisBest(indexBest,:) - gbest));
Temp(Temp>ub)=ub(Temp>ub);
Temp(Temp<lb) = lb(Temp<lb);
fitTemp = fobj(Temp);
if(fitTemp<GBestF)
GBestF =fitTemp;
GBestX = Temp;
X(indexBest,:)=Temp;
fitness(indexBest) = fitTemp;
end
[value, index]= min(fitness);%找最小值
gbest = X(index,:);%当前代,种群最优值
curve(t) = GBestF;
end
Best_pos = GBestX;
Best_score = curve(end);
end
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
5.参考文献:
书籍《MATLAB神经网络43个案例分析》