厨师优化算法求解单目标优化问题附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

⛄ 内容介绍

基于厨师的优化算法(Chef-Based Optimization Algorithm (CBOA)),是于2022年提出的一种基于人类行为的优化算法,该算法通过模拟厨师的烹饪行为来进行寻优,具有寻优能力强,收敛速度快等特点。元启发式算法在处理优化问题方面有着广泛的应用。在这项研究中,开发了一种新的元启发式算法,称为基于厨师的优化算法(CBOA)。CBOA设计的根本灵感来自于培训课程中学习烹饪技能的过程。对各个阶段的烹饪训练过程进行数学建模,目的是提高探索中的全局搜索能力和开发中的局部搜索能力。52 个标准目标函数的集合用于评估 CBOA 在解决优化问题方面的表现。优化结果表明,CBOA能够通过在探索和利用之间建立平衡来提供可接受的解决方案,并且在处理优化问题方面非常高效。此外,CBOA 处理实际应用的有效性还通过四个工程问题进行了测试。选择了 12 种著名的元启发式算法与 CBOA 进行比较。仿真结果表明,CBOA 的性能远远优于竞争算法,并且在解决优化问题方面更有效。

烹饪学生和年轻厨师参加培训课程,提高烹饪技能并成为厨师。这个概念类似于元启发式算法,其中初始化几个候选解决方案,然后通过迭代过程进行改进,以确定最佳候选解决方案作为算法实现结束时问题的解决方案。因此,将烹饪学生转变为烹饪学校厨师的过程是拟议 CBOA 设计的灵感来源。

假设烹饪学校中有一定数量的厨师教练。每位厨师导师负责授课。每个烹饪学生都可以选择参加哪些课程。厨师教练教授学生烹饪技巧和技巧。不过,厨师导师也会根据学校最好的厨师导师的指导和个人练习,努力提高自己的技能。烹饪学生尝试学习和模仿厨师教练的技能。此外,烹饪学生试图通过实践来提高他们所学到的技能。课程结束后,烹饪学生在接受的培训下成为熟练的厨师。

厨师优化算法求解单目标优化问题附matlab代码_路径规划

厨师优化算法求解单目标优化问题附matlab代码_无人机_02

厨师优化算法求解单目标优化问题附matlab代码_路径规划_03

厨师优化算法求解单目标优化问题附matlab代码_路径规划_04

厨师优化算法求解单目标优化问题附matlab代码_优化算法_05

厨师优化算法求解单目标优化问题附matlab代码_无人机_06

厨师优化算法求解单目标优化问题附matlab代码_路径规划_07

厨师优化算法求解单目标优化问题附matlab代码_路径规划_08

⛄ 部分代码

%%% Designed and Developed by Eva Trojovská and Mohammad Dehghani %%%

function [lowerbound,upperbound,dimension,fitness] = fun_info(F)


switch F
    case 'F1'
        fitness = @F1;
        lowerbound=-100;
        upperbound=100;
        dimension=30;
        
    case 'F2'
        fitness = @F2;
        lowerbound=-10;
        upperbound=10;
        dimension=30;
        
    case 'F3'
        fitness = @F3;
        lowerbound=-100;
        upperbound=100;
        dimension=30;
        
    case 'F4'
        fitness = @F4;
        lowerbound=-100;
        upperbound=100;
        dimension=30;
        
    case 'F5'
        fitness = @F5;
        lowerbound=-30;
        upperbound=30;
        dimension=30;
        
    case 'F6'
        fitness = @F6;
        lowerbound=-100;
        upperbound=100;
        dimension=30;
        
    case 'F7'
        fitness = @F7;
        lowerbound=-1.28;
        upperbound=1.28;
        dimension=30;
        
    case 'F8'
        fitness = @F8;
        lowerbound=-500;
        upperbound=500;
        dimension=30;
        
    case 'F9'
        fitness = @F9;
        lowerbound=-5.12;
        upperbound=5.12;
        dimension=30;
        
    case 'F10'
        fitness = @F10;
        lowerbound=-32;
        upperbound=32;
        dimension=30;
        
    case 'F11'
        fitness = @F11;
        lowerbound=-600;
        upperbound=600;
        dimension=30;
        
    case 'F12'
        fitness = @F12;
        lowerbound=-50;
        upperbound=50;
        dimension=30;
        
    case 'F13'
        fitness = @F13;
        lowerbound=-50;
        upperbound=50;
        dimension=30;
        
    case 'F14'
        fitness = @F14;
        lowerbound=-65.536;
        upperbound=65.536;
        dimension=2;
        
    case 'F15'
        fitness = @F15;
        lowerbound=-5;
        upperbound=5;
        dimension=4;
        
    case 'F16'
        fitness = @F16;
        lowerbound=-5;
        upperbound=5;
        dimension=2;
        
    case 'F17'
        fitness = @F17;
        lowerbound=[-5,0];
        upperbound=[10,15];
        dimension=2;
        
    case 'F18'
        fitness = @F18;
        lowerbound=-2;
        upperbound=2;
        dimension=2;
        
    case 'F19'
        fitness = @F19;
        lowerbound=0;
        upperbound=1;
        dimension=3;
        
    case 'F20'
        fitness = @F20;
        lowerbound=0;
        upperbound=1;
        dimension=6;     
        
    case 'F21'
        fitness = @F21;
        lowerbound=0;
        upperbound=10;
        dimension=4;    
        
    case 'F22'
        fitness = @F22;
        lowerbound=0;
        upperbound=10;
        dimension=4;    
        
    case 'F23'
        fitness = @F23;
        lowerbound=0;
        upperbound=10;
        dimension=4;            
end

end

% F1

function R = F1(x)
R=sum(x.^2);
end

% F2

function R = F2(x)
R=sum(abs(x))+prod(abs(x));
end

% F3

function R = F3(x)
dimension=size(x,2);
R=0;
for i=1:dimension
    R=R+sum(x(1:i))^2;
end
end

% F4

function R = F4(x)
R=max(abs(x));
end

% F5

function R = F5(x)
dimension=size(x,2);
R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);
end

% F6

function R = F6(x)
R=sum(floor((x+.5)).^2);
end

% F7

function R = F7(x)
dimension=size(x,2);
R=sum([1:dimension].*(x.^4))+rand;
end

% F8

function R = F8(x)
R=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function R = F9(x)
dimension=size(x,2);
R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;
end

% F10

function R = F10(x)
dimension=size(x,2);
R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);
end

% F11

function R = F11(x)
dimension=size(x,2);
R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;
end

% F12

function R = F12(x)
dimension=size(x,2);
R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function R = F13(x)
dimension=size(x,2);
R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...
((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function R = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
R=(1/500+sum(1./([1:25]+bS))).^(-1);
end

% F15

function R = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function R = F16(x)
R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function R = F17(x)
R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function R = F18(x)
R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function R = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
R=0;
for i=1:4
    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function R = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
R=0;
for i=1:4
    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function R = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

R=0;
for i=1:5
    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function R = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

R=0;
for i=1:7
    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function R = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

R=0;
for i=1:10
    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function R=Ufun(x,a,k,m)
R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

⛄ 运行结果

厨师优化算法求解单目标优化问题附matlab代码_优化算法_09

厨师优化算法求解单目标优化问题附matlab代码_优化算法_10

厨师优化算法求解单目标优化问题附matlab代码_路径规划_11

⛄ 参考文献

[1] Trojovská, E., Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci Rep 12, 14861 (2022). https://doi.org/10.1038/s41598-022-19313-2

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值