1 算法介绍
模型介绍见这里。
2 部分代码
% 清空环境
clc
clear
%读取数据
load data input output
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;
%训练数据和预测数据
input_train=input(1:1900,:)';
input_test=input(1901:2000,:)';
output_train=output(1:1900)';
output_test=output(1901:2000)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
% 参数初始化
dim=21;
maxgen=30; % 进化次数
sizepop=20; %种群规模
popmax=5;
popmin=-5;
end
yy(t)=fMin;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 迭代寻优
x=bestX
%% 结果分析
figure
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
%% 把最优初始阀值权值赋予网络预测
% %用麻雀搜索算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% 训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
%网络训练
[net,tr]=train(net,inputn,outputn);
%%预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
figure(2)
plot(error)
title('仿真预测误差','fontsize',12);
xlabel('仿真次数','fontsize',12);ylabel('误差百分值','fontsize',12);
figure(4)
plot(test_simu,'r*-')
hold on
plot(output_test,'bo-')
legend('预测值','真实值')
3 仿真结果
4 参考文献
[1]魏鹏飞,樊小朝,史瑞静,王维庆,程志江.基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J/OL].热力发电:1-7[2021-09-15]