💥💥💥💥💞💞💞💞💞💞欢迎来到玄武科研社博客之家💞💞💞💞💞💞💥💥💥💥
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:玄武科研社
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(玄武科研社版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、海洋捕食算法及栅格地图简介
1 海洋捕食算法
海洋捕食算法(Marine Predators Algorithm,MPA)是一种受到海洋捕食行为启发的群体智能优化算法。它模拟了海洋生态系统中的捕食行为,通过个体之间的相互作用和信息交流来寻找最优解。
海洋捕食算法的基本原理是将问题转化为一组个体在搜索空间中的位置,这些个体被称为捕食者和猎物。捕食者根据自身适应度和周围猎物的信息选择最佳的位置,而猎物则根据自身适应度和周围捕食者的信息选择逃避或者被捕食的策略。
海洋捕食算法的主要步骤如下:
初始化种群:随机生成一组捕食者和猎物个体,并为每个个体分配初始位置和速度。
评估适应度:根据问题的优化目标,计算每个个体的适应度值。
更新位置和速度:根据捕食者和猎物个体之间的相互作用和信息交流,更新每个个体的位置和速度。
选择最优解:根据适应度值,选择出最优的解决方案作为当前的最优解。
终止条件判断:判断是否满足终止条件,如果满足则结束算法,否则回到第3步继续迭代。
海洋捕食算法具有一定的全局搜索能力和收敛性能,适用于解决各种优化问题,如函数优化、参数优化、组合优化等。它在某些问题上能够提供较好的性能和效果。
2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
10乘10的静态环境地图代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1)) %设置障碍物的左下角点的x,y坐标
for(j=1:n(2))
if(map(i,j)==1)
p(r,1)=j-1;
p(r,2)=i-1;
fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
r=r+1;
hold on
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1<