💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)
⛄ 一、 遗传算法简介
1 问题描述
假定一个加工系统有m台机器和n件工件,每个工件包含一道或多道工序,工件的加工顺序是确定的,但每个工件可能有几条可行的加工路线,即每道工序可在多台不同的机床上加工,工序的加工时间和加工费用随机床的性能不同而变化。作业调度的任务是确定机器上工序的加工顺序,使得某个性能指标(如最大流程时间)取得最优值。下面是针对该调度模型的假设:
(1)每台机床一次只能加工一个工件。
(2)工序一旦进行不能中断。
(3)假定工件之间具备相同的优先级。
(4)不同工件的工序之间没有先后约束。
(5)工序在某台机床的加工时间是确定的。
(6)在零时刻,所有的工件都可被加工。
2 算法描述
遗传算法(Genetic Algorithms)是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。它最早由美国密歇根大学的Holland教授为研究自然与人工系统的自适应行为而提出的一种算法。近年来,遗传算法从理论到实际都已取得了许多重要成果。基于遗传算法求解NP问题的研究也相当活跃,对于求解NP问题,遗传算法已显示出了巨大的优势。
传统遗传算法从一组随机产生的初始解(种群)开始搜索。种群中的每个个体是问题的一个解(染色体),这些染色体在后续迭代中不断进化,称为遗传。在每一代中用“适值”来测量染色体的好坏。生成的下一代染色体,称为子代。后代是由前一代染色体通过交叉或者变异操作形成的,在子代的形成过程中,根据适值的大小选择部分后代,淘汰部分后代,始终保持种群的大小是常数。适值高的染色体被选中的概率较高,体现了“适者生存”的进化机制。这样,经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解。
(1)编码
每个染色体编码为双链,第一条链为优先分配规则的序列,第二条链表示每个工件的每个工序所使用的资源。在第一条链中只记录工件号,其中工件号可以重复,其重复数为此工件的工序数。至于工件的工序号是由工件号在第一条链中相对本工件号的位置决定的。比如工件号2在第一条链中第2次出现,那么它就代表工件2的第2道工序。在第二条链中只记录设备号,如果没有使用设备就记录为0,其记录规则是根据工件号和工件的工序号的先后顺序记录工序所使用的设备号。即,首先记录工件1第1道工序所使用的设备号,接着记录工件1第2道工序所使用的设备号,直到最后记录工件n第m道工序所使用的设备号。因为对于每一道工序染色体都要记录它选择的资源,因此染色体是一个二维数组,它的长度是每个工件工序数之和。
例1:现有3个工件,它们的工序数分别是3,2,4,其中第1个工件的第1,2道工序分别有邀1妖,邀1,2,3妖可利用资源,其中第3道工序不需要资源;第2个工件的第1,2道工序分别具有邀1,2妖,邀2,3妖可利用资源;第3个工件的第1,2,3,4道工序分别具有邀1妖,邀1,2,3妖,邀1,3妖,邀3妖可利用资源。此问题对应的染色体的长度为:3+2+4=9。
它的编码如图1。
图1 染色体1
这里第一条链的编码表示排产过程中优先分配规则进行设备调度的工序顺序:第1个工件的第1道工序、第2个工件的第1道工序、第1个工件的第2道工序、第3个工件的第1道工序、第3个工件的第2道工序、第2个工件的第2道工序、第3个工件的第3道工序、第1个工件的第3道工序、第3个工件的第4道工序。第二条链的编码表示排产过程中每道工序所使用的设备:第1个工件的第1道工序使用第1台设备、第1个工件的第2道工序使用第3台设备、第1个工件的第3道工序不使用设备、第2个工件的第1道工序使用第1台设备、第2个工件的第2道工序使用第3台设备、第3个工件的第1道工序使用第1台设备、第3个工件的第2道工序使用第2台设备、第3个工件的第3道工序使用第1台设备、第3个工件的第4道工序使用第3台设备。
(2)杂交设计
对于一般的染色体的基因由于相互之间不存在影响,具有正交性,所以通常的交叉运算只需在染色体中选定某一个或几个随机的交叉点进行交叉即可。而该文定义的染色体是双链,并且在第一条链中工件号出现的个数与第二条链中设备号的选择都存在约束,因此本算法采用一种改进的单亲演化算法来进行杂交。
此改进的单亲演化算法只对第一条链进行杂交,在杂交过程中第二条链保持不变。对于一个染色体的第一条链(R1、R2、......、Rn),首先随机的产生2个数s和t(0<s<t<n+1),然后把染色体第一条链中的Rs、......、Rt片段进行翻转得到一个新的染色体。
⛄ 二、部分源代码
clc, clear, close all
load(‘usborder.mat’,‘x’,‘y’,‘xx’,‘yy’);
cities = 40;
locations = zeros(cities,2);
n = 1;
while (n <= cities)
xp = rand*1.5;
yp = rand;
if inpolygon(xp,yp,xx,yy)
locations(n,1) = xp;
locations(n,2) = yp;
n = n+1;
end
end
plot(locations(:,1),locations(:,2),‘bo’);
xlabel(‘城市的横坐标x’); ylabel(‘城市的纵坐标y’);
grid on
%% 计算城市距离
distances = zeros(cities);
for count1=1:cities
for count2=1:count1
x1 = locations(count1,1);
y1 = locations(count1,2);
x2 = locations(count2,1);
y2 = locations(count2,2);
distances(count1,count2)=sqrt((x1-x2)2+(y1-y2)2);
distances(count2,count1)=distances(count1,count2);
end
end
x1 = x
%% 定义目标函数
FitnessFcn = @(x) traveling_salesman_fitness(x,distances);
my_plot = @(options,state,flag) traveling_salesman_plot(options, …
state,flag,locations);
⛄ 三、运行结果
⛄ 四、 matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]彭翔,戴祝英.关于车间作业调度的组合优化算法[J].现代计算机(专业版). 2004,(05)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置