【车辆检测】 yolo v2车辆检测识别【含Matlab源码 581期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、简介

1 前言
Okay……最近事情比较多,博客也发的少,所以决定搞一次大新闻。本此的博客详细记录了我使用Matlab进行车辆区域检测(R-CNN)与车型识别(AlexNet)的过程。并且内包含了训练数据集、测试数据集以及源码。
训练数据集是使用的斯坦福大学的一个车型数据库,内含196种不同的车型。写到这里我真的很想吐槽一下这个数据库里面的奥迪车系:很多黑白的图片啊喂!!! 做训练的时候AlexNet数据输入维度是3啊喂!!!害的我自己找了很多图片啊!!!….

2 环境
测试环境:
硬件:
Intel i5-4590
GTX 980
软件:
Matlab R2016b(只有这个版本才实现了RCNN…)

3 数据集的下载
嗯。一上来就发福利:
原始数据集,内含train/test:http://pan.baidu.com/s/1miTn9jy
我规整后的数据集,将图片变换为227*227,并且对少量黑白图片进行了替换:http://pan.baidu.com/s/1pKIbQiB
接下来的这个是每一张图片所对应的车型标注文件:http://pan.baidu.com/s/1nuOR7PR

在Matlab中下载AlexNet
AlexNet是2012年ImageNet大赛的冠军。它一共有8层,其中了5个卷积层,2层全连接和一层分类,如果使用其对一张图片进行前向传播,那么最后输出的这张图片属于1000种物体中哪一个的概率。
我这里对AlexNet在Matlab中进行了定义,这是我的代码和网络结构:

⛄二、部分源代码

clear
clc

doTraining = true; % 是否进行训练

% 解压数据
% data = load(‘./data/carDatasetGroundTruth.mat’);
% vehicleDataset = data.carDataset; % table型,包含文件路径和groundTruth
data = load(‘./data/vehicleDatasetGroundTruth.mat’);
vehicleDataset = data.vehicleDataset; % table型,包含文件路径和groundTruth

% 添加绝对路径至vehicleDataset中
vehicleDataset.imageFilename = fullfile([pwd, ‘/data/’],vehicleDataset.imageFilename);

% 显示数据集中的一个图像,以了解它包含的图像的类型。
vehicleDataset(1:4,:) % 显示部分数据情况

% 将数据集分成两部分:一个是用于训练检测器的训练集,一个是用于评估检测器的测试集。
% 选择 70% 的数据进行训练,其余数据用于评估。
rng(0); % 控制随机数生成
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.7 * length(shuffledIndices) );
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx)😅;
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end)😅;

% 保存数据和标签
imdsTrain = imageDatastore(trainingDataTbl{:,‘imageFilename’}); % 路径
bldsTrain = boxLabelDatastore(trainingDataTbl(:,‘vehicle’)); % 真实框和类别

imdsTest = imageDatastore(testDataTbl{:,‘imageFilename’});
bldsTest = boxLabelDatastore(testDataTbl(:,‘vehicle’));

% 整理训练测试集
trainingData = combine(imdsTrain,bldsTrain); % 联合文件路径和真实框
testData = combine(imdsTest,bldsTest);

% 显示数据
data = read(trainingData); % data包括图片数据、真实框坐标、类别
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,‘Rectangle’,bbox); % 在数据矩阵中标出真实框
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage) % 显示图像

% 创建yolo网络
inputSize = [224 224 3];
numClasses = width(vehicleDataset)-1; % 通过table的列数计算类别数

% 用于评估锚框个数
trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

% 特征提取层采用resnet50
featureExtractionNetwork = resnet50;

featureLayer = ‘activation_40_relu’;

% 设置yolo网络
lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

% 进行数据增强
augmentedTrainingData = transform(trainingData,@augmentData);

% 可视化增强后的图片
augmentedData = cell(4,1);
for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{1},‘Rectangle’,data{2});
reset(augmentedTrainingData);
end
figure
montage(augmentedData,‘BorderSize’,10)

% 对增强数据进行预处理
preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

data = read(preprocessedTrainingData);

% 显示一下
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,‘Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

% 训练参数
options = trainingOptions(‘sgdm’, …
‘MiniBatchSize’, 16, …
‘InitialLearnRate’,1e-3, …
‘MaxEpochs’,20,…
‘CheckpointPath’, tempdir, …
‘Shuffle’,‘never’);

if doTraining
% 训练YOLOv2检测器
[detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);
else
% 载入预训练模型
pretrained = load(‘yolov2_mytrain.mat’);
detector = pretrained.detector;
end

% 测试训练好的模型并显示
I = imread(testDataTbl.imageFilename{4});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

I = insertObjectAnnotation(I,‘rectangle’,bboxes,scores);
figure
imshow(I)

% 预处理测试集
preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));
% 对测试集数据进行测试
detectionResults = detect(detector, preprocessedTestData);
% 评估准确率
[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

figure
plot(recall,precision)
xlabel(‘Recall’)
ylabel(‘Precision’)
grid on
title(sprintf(‘Average Precision = %.2f’,ap))

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]黎洲,黄妙华.基于YOLO_v2模型的车辆实时检测[J].中国机械工程. 2018,29(15)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

### 回答1: 基于YOLO(v2)深度学习的车辆检测识别MATLAB源码是使用MATLAB编程语言实现的,目的是通过训练深度神经网络实现对车辆的自动检测识别YOLO(v2)是一种目标检测算法,其全称为You Only Look Once,可以实时地从图像中检测多个目标。在车辆检测识别任务中,YOLO(v2)通过划分图像为多个网格单元,并根据每个单元内的特征预测出车辆的边界框、类别和置信度。 MATLAB源码的实现过程主要包括以下几个步骤: 1. 数据准备:收集和准备用于训练的车辆图像和对应的标签数据。标签数据包括车辆边界框的位置和类别信息。 2. 网络设计:设计一个基于YOLO(v2)网络结构的深度神经网络。该网络包括卷积层、池化层、全连接层、激活函数等。 3. 权重初始化:使用预训练的权重对网络进行初始化,以加快网络的训练速度和提高准确度。 4. 数据增强:对训练数据进行随机平移、旋转、缩放等增强操作,增加训练样本的多样性和数量。 5. 损失函数定义:定义用于训练的损失函数,包括边界框定位损失、类别预测损失和置信度损失。 6. 训练网络:使用训练数据对网络进行训练,并根据损失函数对网络参数进行更新。 7. 测试与评估:使用测试数据对网络进行评估,计算检测识别的准确率、召回率和F1分数等指标。 8. 模型应用:将训练好的模型应用于新的图像,实现车辆检测识别。可以通过调整置信度的阈值来控制检测的精度和召回率。 基于YOLO(v2)深度学习的车辆检测识别MATLAB源码可以通过搜索相关资源或参考开源项目获得,也可以根据以上步骤进行自行实现。在使用源码时,需要注意安装相应的深度学习库,如MATLAB的Deep Learning Toolbox,以及确保计算机具备足够的计算资源和显卡支持。 ### 回答2YOLO v2是一种基于深度学习的目标检测算法,能够在图像中实时地检测识别多个目标。通过使用YOLO v2算法,我们可以编写MATLAB源码来实现车辆检测识别。 首先,在MATLAB中导入YOLO v2的深度学习模型,并将其加载到工作空间中。然后,我们需要准备一些车辆图像数据集,并将其分为训练集和测试集。接下来,我们使用数据集对模型进行训练,以便让模型能够学习和识别车辆。 在模型训练完成后,我们可以使用训练好的模型来进行车辆检测识别。首先,我们将一张待检测的图像输入到模型中,模型将输出图像中所有检测到的目标的位置和类别。然后,我们可以根据输出的结果在图像上绘制边界框和类别标签,以便更直观地观察识别结果。 在编写源码时,我们需要考虑一些细节。首先,我们需要设置模型的超参数,如输入图像的尺寸、训练的迭代次数等。其次,我们需要编写代码来导入和预处理图像数据集,并将其分为训练集和测试集。然后,我们需要定义模型的结构和损失函数,并选择合适的优化算法来训练模型。最后,我们可以编写代码来加载训练好的模型,并将其应用于新的图像数据集。 总之,基于YOLO v2的深度学习检测识别车辆MATLAB源码可以实现车辆的实时检测识别。通过编写源码,我们可以导入和训练YOLO v2模型,并使用训练好的模型来对车辆图像进行检测识别。这样,我们可以方便地应用该算法于车辆相关应用中。 ### 回答3: YOLO v2(You Only Look Once v2)是一种深度学习模型,用于车辆检测识别。其主要特点是快速和准确,能够实时识别图像中的车辆。 基于YOLO v2车辆检测识别MATLAB源码主要包括以下步骤: 1. 数据集准备:收集并整理包车辆的图像数据集,同时制作标签信息,标注车辆的位置和类别。 2. 数据预处理:对图像进行预处理,如调整大小、翻转、旋转等操作,以提高模型对不同尺度和变化的适应能力。 3. 模型训练:使用YOLO v2的网络架构和深度学习框架(如MATLAB中的Deep Learning Toolbox)进行模型训练。训练过程包括输入前向传播和后向传播,通过优化算法(如梯度下降)调整模型参数,使其逐渐收敛到最佳状态。 4. 模型评估:使用评估数据集对训练好的模型进行评估,计算检测识别的准确率、召回率和F1值等指标,以评估模型的性能。 5. 结果可视化:将模型在测试图像上的检测识别结果进行可视化展示,用不同的边界框和类别标签标识出检测到的车辆。 除了以上步骤,还有一些细节需要注意,如数据集的平衡性、模型的超参数调优、数据增强等。此外,为了提高模型的性能和泛化能力,还可以考虑使用预训练的权重参数、引入多尺度检测和注意力机制等技巧。 总结起来,基于YOLO v2的深度学习检测识别车辆MATLAB源码主要包括数据准备、数据预处理、模型训练、模型评估和结果可视化等步骤,通过优化模型参数和技巧,提高检测识别的准确率和实时性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值