💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
QAB(Quantitative Analysis of Biosystems)是一种用于生物系统定量分析的方法。在QAB中,图像去噪是一个重要的步骤,旨在减少或消除图像中的噪声,以便更准确地分析图像中的生物系统结构和功能。图像去噪是通过应用各种数字信号处理技术来实现的,这些技术可以从图像中识别和过滤掉噪声,同时尽可能地保留有用的信息。常用的图像去噪方法包括均值滤波、中值滤波、高斯滤波、小波变换等。在QAB中,图像去噪的目标是使图像更清晰、更易于分析,并提高后续分析步骤的准确性和可靠性。去噪后的图像可以更好地用于定量分析生物系统的各种特征,例如细胞形态、蛋白质表达水平、细胞器分布等。
📚2 运行结果
主函数部分代码:
close all
clc; clear;
%load data
load('sample_image.mat')
%size of signal
[M,N] = size(I);
NN = N^2;
%generate the noise
SNR = 15;
pI = sum(I(:) .^2) / length(I(:));
B = randn(N,N) .* sqrt(abs(I)); % Poisson noise
pB_tmp = sum(sum(B .^2)) / NN;
B = B / sqrt(pB_tmp) * sqrt(pI * 10^(- SNR / 10));
J = B + I; %noisy image
% Data
Ms = 20; % number of iteration in reconstruction
pds = 3; % value of palnck's constant
sg = 7.5; % Gaussian Variance (smoothing)
%image denoising using QAB
[I_result] = image_denoising_QAB(I,J,Ms,pds,sg);
% Here one may think why we need I as input, since I is the clean image.
% Actually in the program, the clean image data I is used just to find out the
% best thresholding hyperparameter. In the code, one can see that the clean
% image I is only used for the computation of signal-to-noise-ratio (SNR)
% and based on this one can tune the best thresholding hyperparameter.
% So, one does not need any knowledge about the clean image I for computing
% the quantum adaptive basis (QAB) and can tune the thresholding hyperparameter
% manually up to their best possible values and modify the code accordingly.
% Therefore, one should not get confused after seeing I as an input, because I
% does not have any impact on the denoising process.
% Calculation of SNR, PSNR and SSIM
pnB = sum((I_result(:) - I(:)) .^2) / length(I(:));
SNR_end = 10 * log10(pI / pnB);
PSNR_end = calc_PSNR(I,I_result);
SSIM_end = ssim_index(I_result, I, [0.01 0.03], fspecial('gaussian', 3, 1.5), max(I(:)))
% Print data
fprintf('\n\n OUTPUT:\n SNR = %.2f, PSNR = %.2f, and SSIM = %.2f \n\n',SNR_end,PSNR_end,SSIM_end);
%plot figures
font_size = 12;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]郭江龙,蒋庆,曹松晓等.基于图像处理的微通道流道板表面缺陷检测方法研究[J/OL].电子测量与仪器学报:1-9[2024-03-27].http://kns.cnki.net/kcms/detail/11.2488.TN.20240325.0943.007.html.
[2]张文淇,张浩,牛志杰等.一种基于改进Shallow-UWnet的浑浊水体图像增强方法[J/OL].光电子·激光:1-10[2024-03-27].http://kns.cnki.net/kcms/detail/12.1182.O4.20240321.1604.028.html.