前言:
9月21日,OpenAI 发布了一个名为「Whisper 」的神经网络,声称其在英语语音识别方面已接近人类水平的鲁棒性和准确性。
「Whisper 」式一个自动语音识别(ASR)系统,研究团队通过使用从网络上收集的68万个小时多语音和多任务监督数据,来对其进行训练。
训练过程中研究团队发现,使用如此庞大且多样化的数据集可以提高对口音、背景噪音和技术语言的鲁棒性。
此前有不同研究表明,虽然无监督预训练可以显著提高音频编码器的质量,但由于缺乏同等高质量的预训练解码器,以及特定于数据集中的微调协议,因此在一定程度上限制了模型的有效性和鲁棒性;而在部分有监督的方式预训练语音识别系统中,其表现会比单一源训练的模型呈现出更高的鲁棒性。
对此,在「Whisper 」中,OpenAI 在新数据集比现有高质量数据集总和大几倍的基础上,将弱监督语音识别的数量级扩展至68万小时;同时,研究团队还演示了在这种规模下,所训练模型在转移现有数据集的零射击表现,可消除任何特定于数据集微调的影响,以实现高质量结果。
摘自:OpenAI 发布新语音系统「Whisper 」,英文识别能力可接近人类水平 | 雷峰网 (leiphone.com)
官方项目GitHub
https://github.com/openai/whisper
截至项目开源,短短数天之内,star就到达了9k之多,可谓备受瞩目。

官方还贴心地给出了几款不同参数地模型可供选择。
今

最低0.47元/天 解锁文章
9558

被折叠的 条评论
为什么被折叠?



