DAY 44 预训练模型

知识点回顾:

  1. 预训练的概念
  2. 常见的分类预训练模型
  3. 图像预训练模型的发展史
  4. 预训练的策略
  5. 预训练代码实战:resnet18

作业:

  1. 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
  2. 尝试通过ctrl进入resnet的内部,观察残差究竟是什么
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torchvision.models import resnet18, densenet121
    from torchsummary import summary  # 查看模型结构
    import matplotlib.pyplot as plt
     
    # 设备配置
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
     
    # CIFAR10 数据预处理
    transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
    test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
     
    class DenseNetC10(nn.Module):
        def __init__(self, num_classes=10):
            super(DenseNetC10, self).__init__()
            # 压缩原版 DenseNet121,减少层数和通道数
            self.features = nn.Sequential(
                nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(32),
                nn.ReLU(inplace=True),
                # 3个密集块,每个块含3层
                self._make_dense_block(32, 32, num_layers=3),
                self._make_dense_block(64, 32, num_layers=3),
                self._make_dense_block(96, 32, num_layers=3),
                nn.BatchNorm2d(128),
                nn.ReLU(inplace=True),
                nn.AdaptiveAvgPool2d((1, 1))
            )
            self.classifier = nn.Linear(128, num_classes)
        
        def _make_dense_block(self, in_channels, growth_rate, num_layers):
            layers = []
            for _ in range(num_layers):
                layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))
                layers.append(nn.BatchNorm2d(growth_rate))
                layers.append(nn.ReLU(inplace=True))
                in_channels += growth_rate
            return nn.Sequential(*layers)
        
        def forward(self, x):
            features = self.features(x)
            out = features.view(features.size(0), -1)
            out = self.classifier(out)
            return out
     
    # 初始化模型
    models = {
        'DenseNet-C10': DenseNetC10().to(device),
        'MobileViT': MobileViT().to(device),
        'RepVGG': RepVGG().to(device),
        'ResNet18': resnet18(pretrained=False, num_classes=10).to(device)  # 对比基准
    }
     
    # 训练超参数
    criterion = nn.CrossEntropyLoss()
    accuracies = {}
     
    for model_name, model in models.items():
        print(f'\nTraining {model_name}...')
        optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
        scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
        best_acc = 0.0
        for epoch in range(1, 201):
            train_model(model, criterion, optimizer, epoch)
            acc = test_model(model, criterion)
            if acc > best_acc:
                best_acc = acc
        accuracies[model_name] = best_acc
     
    # 打印对比结果
    print('\nFinal Accuracy Comparison:')
    for name, acc in accuracies.items():
        print(f'{name}: {acc:.2f}%')
     
    def visualize_residual(model, data):
        # 注册钩子函数捕捉残差块输出
        residuals = []
        def hook(module, input, output):
            residual = output - input[0]  # 残差 = 输出 - 输入
            residuals.append(residual.detach().cpu())
        
        # 选择ResNet18的第一个残差块(layer1[0])
        model.layer1[0].register_forward_hook(hook)
        with torch.no_grad():
            model(data.to(device))
        
        # 可视化残差图(取第一个样本的第一个通道)
        residual = residuals[0][0, 0, :, :]  # 形状(32,32)
        plt.figure(figsize=(6, 4))
        plt.subplot(1, 2, 1)
        plt.imshow(data[0].permute(1, 2, 0))  # 原始图像
        plt.title('Input Image')
        plt.subplot(1, 2, 2)
        plt.imshow(residual, cmap='coolwarm')  # 残差热力图
        plt.title('Residual Map')
        plt.colorbar()
        plt.show()
     
    # 测试残差可视化(用ResNet18和测试集中的一张图像)
    resnet_model = resnet18(num_classes=10).to(device)
    data, _ = next(iter(test_loader))
    visualize_residual(resnet_model, data[:1])  # 取第一个样本

    收敛后的效果超过非预训练模型的85%

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值