作业:一次稍微有点学术感觉的作业:
1. 对inception网络在cifar10上观察精度
2. 消融实验:引入残差机制和cbam模块分别进行消融
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torchvision.models as models
import time
import copy
# 设置随机种子确保可复现性
torch.manual_seed(42)
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# 加载CIFAR-10数据集
trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
# 定义CBAM模块
class ChannelAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, in_channels // reduction_ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_channels // reduction_ratio, in_channels, 1, bias=False)
)
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return torch.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avg_out, max_out], dim=1)
out = self.conv(out)
return torch.sigmoid(out)
class CBAM(nn.Module):
def __init__(self, in_channels, reduction_ratio=16, kernel_size=7):
super(CBAM, self).__init__()
self.channel_att = ChannelAttention(in_channels, reduction_ratio)
self.spatial_att = SpatialAttention(kernel_size)
def forward(self, x):
x = x * self.channel_att(x)
x = x * self.spatial_att(x)
return x
# 定义Inception模块
class InceptionModule(nn.Module):
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(InceptionModule, self).__init__()
# 1x1卷积分支
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, ch1x1, kernel_size=1),
nn.BatchNorm2d(ch1x1),
nn.ReLU(True),
)
# 1x1卷积 -> 3x3卷积分支
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, ch3x3red, kernel_size=1),
nn.BatchNorm2d(ch3x3red),
nn.ReLU(True),
nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1),
nn.BatchNorm2d(ch3x3),
nn.ReLU(True),
)
# 1x1卷积 -> 5x5卷积分支
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels, ch5x5red, kernel_size=1),
nn.BatchNorm2d(ch5x5red),
nn.ReLU(True),
nn.Conv2d(ch5x5red, ch5x5, kernel_size=5, padding=2),
nn.BatchNorm2d(ch5x5),
nn.ReLU(True),
)
# 3x3池化 -> 1x1卷积分支
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, pool_proj, kernel_size=1),
nn.BatchNorm2d(pool_proj),
nn.ReLU(True),
)
def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)
# 基础Inception网络
class BasicInception(nn.Module):
def __init__(self, num_classes=10):
super(BasicInception, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(True)
self.inception1 = InceptionModule(64, 32, 48, 64, 8, 16, 16)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception2 = InceptionModule(128, 64, 64, 96, 16, 48, 32)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception3 = InceptionModule(240, 96, 48, 104, 8, 24, 32)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.inception1(x)
x = self.pool1(x)
x = self.inception2(x)
x = self.pool2(x)
x = self.inception3(x)
x = self.global_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 带残差连接的Inception网络
class ResidualInception(nn.Module):
def __init__(self, num_classes=10):
super(ResidualInception, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(True)
self.inception1 = InceptionModule(64, 32, 48, 64, 8, 16, 16)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception2 = InceptionModule(128, 64, 64, 96, 16, 48, 32)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception3 = InceptionModule(240, 96, 48, 104, 8, 24, 32)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
# 残差连接的1x1卷积
self.res_conv1 = nn.Conv2d(64, 128, kernel_size=1, stride=2)
self.res_conv2 = nn.Conv2d(128, 240, kernel_size=1, stride=2)
def forward(self, x):
identity = x
x = self.relu1(self.bn1(self.conv1(x)))
x = self.inception1(x)
identity = self.res_conv1(identity)
x += identity
x = F.relu(x)
x = self.pool1(x)
identity = x
x = self.inception2(x)
identity = self.res_conv2(identity)
x += identity
x = F.relu(x)
x = self.pool2(x)
x = self.inception3(x)
x = self.global_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 带CBAM模块的Inception网络
class CBAMInception(nn.Module):
def __init__(self, num_classes=10):
super(CBAMInception, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(True)
self.inception1 = InceptionModule(64, 32, 48, 64, 8, 16, 16)
self.cbam1 = CBAM(128)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception2 = InceptionModule(128, 64, 64, 96, 16, 48, 32)
self.cbam2 = CBAM(240)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception3 = InceptionModule(240, 96, 48, 104, 8, 24, 32)
self.cbam3 = CBAM(256)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.inception1(x)
x = self.cbam1(x)
x = self.pool1(x)
x = self.inception2(x)
x = self.cbam2(x)
x = self.pool2(x)
x = self.inception3(x)
x = self.cbam3(x)
x = self.global_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 训练函数
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# 每个epoch都有一个训练和验证阶段
model.train() # 训练模式
running_loss = 0.0
running_corrects = 0
# 迭代训练数据
for inputs, labels in trainloader:
inputs = inputs.to(device)
labels = labels.to(device)
# 零梯度
optimizer.zero_grad()
# 前向传播
# 只有在训练时才跟踪历史
with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 后向传播 + 优化
loss.backward()
optimizer.step()
# 统计
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
scheduler.step()
epoch_loss = running_loss / len(trainset)
epoch_acc = running_corrects.double() / len(trainset)
print(f'Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# 深拷贝模型
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best train Acc: {best_acc:4f}')
# 加载最佳模型权重
model.load_state_dict(best_model_wts)
return model
# 测试函数
def evaluate_model(model):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Accuracy of the network on the 10000 test images: {accuracy:.2f}%')
return accuracy
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 实验结果记录
results = {}
# 实验1:基础Inception网络
print("===== 实验1: 基础Inception网络 =====")
model_basic = BasicInception().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_basic.parameters(), lr=0.001, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model_basic = train_model(model_basic, criterion, optimizer, scheduler, num_epochs=10)
basic_accuracy = evaluate_model(model_basic)
results["Basic Inception"] = basic_accuracy
# 实验2:带残差连接的Inception网络
print("\n===== 实验2: 带残差连接的Inception网络 =====")
model_residual = ResidualInception().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_residual.parameters(), lr=0.001, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model_residual = train_model(model_residual, criterion, optimizer, scheduler, num_epochs=10)
residual_accuracy = evaluate_model(model_residual)
results["Residual Inception"] = residual_accuracy
# 实验3:带CBAM模块的Inception网络
print("\n===== 实验3: 带CBAM模块的Inception网络 =====")
model_cbam = CBAMInception().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_cbam.parameters(), lr=0.001, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model_cbam = train_model(model_cbam, criterion, optimizer, scheduler, num_epochs=10)
cbam_accuracy = evaluate_model(model_cbam)
results["CBAM Inception"] = cbam_accuracy
# 输出实验结果对比
print("\n===== 实验结果对比 =====")
print("{:<20} {:<10}".format("模型", "准确率 (%)"))
print("-" * 30)
for model, acc in results.items():
print("{:<20} {:<10.2f}".format(model, acc))
6820

被折叠的 条评论
为什么被折叠?



