知识要点
-
padding= valid和same, 图片大小的变化.
-
卷积图片尺寸的变换.
一 padding 研究
from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
1.1 padding = valid
(向上取整)
model = keras.Sequential([keras.layers.Input(shape = (7, 7, 3), dtype = 'float32'),
keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'valid')])
model.summary()
model = keras.Sequential([keras.layers.Input(shape = (8, 8, 3), dtype = 'float32'),
keras.layers.MaxPool2D(pool_size = 4, strides = 2, padding = 'same')])
model.summary()
1.2 padding = same
(向上取整)
model = keras.Sequential([keras.layers.Input(shape = (8, 8, 3), dtype = 'float32'),
keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'valid')])
model.summary()
model = keras.Sequential([keras.layers.Input(shape = (8, 8, 3), dtype = 'float32'),
keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'same')])
model.summary()
model = keras.Sequential([keras.layers.Input(shape = (8, 8, 3), dtype = 'float32'),
keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'SAME')])
model.summary()