Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals 学习笔记

该论文提出一种两阶段框架用于车辆重识别,结合复杂的时空信息有效规范识别结果。通过链MRF建模生成视觉时空路径提案,并使用深度神经网络学习成对的视觉时空潜在函数。Siamese-CNN+Path-LSTM网络用于确定查询图像对的车辆身份匹配度。

Abstract and Introduce

In this paper, we propose a two-stage framework that incorporates complex spatio-temporal information for effectively regularizing the re-identification results.
If a vehicle is observed at both camera A and C, the same vehicle has to appear at camera B as well. Therefore, given a pair of vehicle images at location A and C, if an image with similar appearance is never observed at camera B at a proper time, their matching confidence should be very low.


The main contribution of our method is two-fold. (1) We propose a two-stage framework for vehicle re-identification. It first proposes a series of candidate visual-spatio-temporal

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值