流体力学深度学习建模技术研究进展

本文介绍了深度学习技术如何应用于流体力学建模,包括对流体力学控制方程的学习、流场重构和力系数映射等方面,展示了深度学习在解决高维复杂流体力学问题中的潜力和挑战。研究指出,尽管深度学习在流体力学中有广泛应用,但仍需解决数据构造、超参数选择、训练方法和可靠性等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流体力学深度学习建模技术研究进展

王怡星、韩仁坤、刘子扬、张扬、陈刚

摘要: 深度学习技术在图像处理、语言翻译、疾病诊断、游戏竞赛等领域已带来了颠覆性的变化。流体力学问题由于维度高、非线性强、数据量大等特点,恰恰是深度学习擅长并可以带来研究范式创新的重要领域。目前,深度学习技术已在流体力学领域得到了初步应用,其应用潜力逐渐得到证实。以流体力学深度学习技术为背景,结合课题组近期研究结果,探讨了流体力学深度学习建模技术及其最新进展。首先,对深度学习技术所涉及的基本理论做了介绍,阐释流场建模中常用深度学习方法背后的数学原理。其次,分别对流体力学控制方程、流场重构、特征量建模和应用等几个典型的人工智能与流体力学交叉问题应用场景所涉及的深度学习技术研究进展进行了介绍。最后,探讨了流体力学深度学习建模技术所面临的挑战与未来发展趋势。

关键词: 深度学习, 流体力学, 降阶技术, 流场重构, 几何特征提取, 非线性系统建模 

窗体底端

维度高、非线性强、数据量大是流体力学问题的主要特点。近年来火热的深度学习技术由于以数据驱动为主、可以解决高维复杂问题,目前已在流体力学领域得到了一定应用。文章结合课题组近期研究探讨了流体力学深度学习建模技术的最新进展。当前学术界关于流体力学与深度学习技术的交叉研究可以概括为以下三个方面:

1. 对流体力学控制方程的学习

通过从偏微分方程的数学求解出发,应用神经网络进行辅助求解。主要可分为两个思路:以偏微分方程整体为目标进行学习,以及只对雷诺应力等部分项进行的学习。

图 1  翼型绕流涡黏系数云图

上图展示了西北工业大学张伟伟教授等采用神经网络算法,以高雷诺数翼型绕流的S-A湍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值