An Easy Way to Make a Treemap

本文指导您如何仅用几行代码在R中创建树状图,展示数据集的层次结构并保持其视觉完整性。
By  NATHAN YAU
If your data is a hierarchy, a treemap is a good way to show all the values at once and keep the structure in the visual. This is a quick way to make a treemap in R.
Treemap

Back in 1990, Ben Shneiderman, of the University of Maryland, wanted to visualize what was going on in his always-full hard drive. He wanted to know what was taking up so much space. Given the hierarchical structure of directories and files, he first tried a tree diagram. It got too big too fast to be useful though. Too many nodes. Too many branches.

The treemap was his solution. It's an area-based visualization where the size of each rectangle represents a metric since made popular by Martin Wattenberg's Map of the Market and Marcos Weskamp's newsmap.

Here's a really easy way to make your own treemap in just a couple lines of code. We're looking to make something like the above.

Step 0. Download R

Like before, we're going to use R, so you'll want to get it before going any further. Download it for WindowsMac, or Linux. Don't let the out-dated site full you. You can get a lot done with the free software.

Step 1. Load the Data

We'll use data covering a hundred popular posts on FlowingData. Here it is in CSV format. You don't have to download it though. We'll just load it directly into R. The main thing to take note of is what is there. There's post id, number of views, number of comments, and category.

Okay, let's load it into R using read.csv():

data <- read.csv("http://datasets.flowingdata.com/post-data.txt")

Loading data in CSV format into R.

Easy enough. We just used the read.csv() function to load data from a URL. If your data is on your computer, you could also do something like data <- read.csv("post-data.txt"). Just make sure the data file is in your current working directory, which you can change via the "Miscellaneous" menu.

Step 2. Load the Portfolio package

Only a few more lines of code, and you've got a treemap. It's so easy, because we're going to use the portfolio library in R. First, you have to install it. You can either install the library via the "Package Installer" or you can do it through the command line. Let's do the latter. Type this in the console to install portfolio:

install.packages("portfolio")

Once installed, load it into R:

library(portfolio)

Step 3. Make the Treemap

It's time to make the treemap with map.market(). Type this in the console:

map.market(id=data$id, area=data$views, group=data$category, color=data$comments, main="FlowingData Map")

Tada. You should get something like this:

The default treemap uses a red-green color scale.

To sum up, we did this with four lines of code:

data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
install.packages("portfolio")
library(portfolio)
map.market(id=data$id, area=data$views, group=data$category, color=data$comments, main="FlowingData Map")

Step 4. Customize

Now maybe you want to modify something like color. The cool thing about R is that you can see the code for all the functions, edit it, and then use your customized version. If the green and red scheme isn't for you or you don't care about the positive/negative cutoff, then you can change the code to do that. I won't go into detail, but if you type map.marketin the console, you'll see the function. You can change color or cutoff around lines 36-46.

For example, you can do a black and white color scheme:

You don't have to stick to the default color scale though.

I was alright with the green for this, so I saved it as a PDF and then loaded it into Illustrator as usual. I numbed the green some, cleaned up the labels with a new font and layout, and updated the legend.

Touched up version of treemap with black-green color scale.

And there you go - a treemap with just a few lines of code in our all-trusty R. Rinse and repeat with your own data.


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值